Abstract:
A voltage measuring circuit includes an under-voltage measuring circuit and an over-voltage measuring circuit. The under-voltage measuring circuit includes a first voltage comparator, a first zener diode, and a first light emitting diode. An inverting input of the first voltage comparator is connected to a cathode of the first zener diode. An output of the first voltage comparator is connected to a cathode of the first light emitting diode. The over-voltage measuring circuit includes a second voltage comparator, a second zener diode, and a second light emitting diode. A non-inverting input of the second voltage comparator is connected to the cathode of the second zener diode. An output of the second voltage comparator is connected to a cathode of the second light emitting diode.
Abstract:
A circuit for controlling rotation speed of a computer fan includes a fan header for connecting to a 4-pin fan or a 3-pin fan, a jumper device, an amplifier, and a controller. The jumper device has a first pin for receiving a controlling signal, and connected to a first power source, a second pin connected to the fan header, and a third pin connected to the first power source. The amplifier has an input terminal connected to the third pin of the jumper device via an integrator. The controller has a first terminal connected to an output terminal of the amplifier, a second terminal connected to a second power source, and a third terminal connected to the fan header and connected to a positive input terminal of the amplifier via a resistor. The first pin of the jumper device is selectively connected to the second or third pin.
Abstract:
A circuit for controlling rotation speed of a computer fan includes a fan header for connecting to a 4-pin fan or a 3-pin fan, a jumper device, an amplifier, and a controller. The jumper device has a first pin for receiving a controlling signal, and connected to a first power source, a second pin connected to the fan header, and a third pin connected to the first power source. The amplifier has an input terminal connected to the third pin of the jumper device via an integrator. The controller has a first terminal connected to an output terminal of the amplifier, a second terminal connected to a second power source, and a third terminal connected to the fan header and connected to a positive input terminal of the amplifier via a resistor. The first pin of the jumper device is selectively connected to the second or third pin.
Abstract:
A memory voltage control circuit includes two slots, a control circuit, a voltage conversion circuit, and a switch circuit. The two slots are able to efficiently process different memory types. The control circuit receives memory identification signals from the two slots. The control circuit administers the output voltage of the voltage conversion circuit according to the memory identification signals. The memory identification signals determine whether the switch circuit is to be turned on or off. This will control whether the output voltage of the voltage conversion circuit will go to the first or the second slot.
Abstract:
A leakage current prevention circuit for preventing a power source from being affected by leakage current includes a first transistor, and a second transistor. A gate of the first transistor receives a control signal and a source of the first transistor is grounded. A gate of the second transistor is connected to a drain of the first transistor, a drain of the second transistor is electrically connected to the power source, and a source of the second transistor is connected to a pull-up circuit which is connected to a chipset. When the chipset receives a drive signal, the control signal controls status of the first and second transistors so that the power source provides voltage to the pull-up circuit for the drive signal.
Abstract:
A linear voltage regulator provides a regulated load voltage to a load. In a preferred embodiment, the linear voltage regulator includes: a regulating circuit for receiving an input voltage and providing an output voltage to a load, the regulating circuit being driven by a driving voltage; and two resistors connected to each other in series receiving the output voltage and providing an adjusting current to the regulating circuit. The linear voltage regulator is capable of providing a greater current to the load, and having a wide range of input voltages.
Abstract:
A control circuit for command signals of a clock generator includes a power supply end, an output end, a control end, a diode, a first resistor and a second resistor. The first resistor, the diode, and the second resistor are connected in series between the power supply end and the ground. The diode has an anode connected to the first resistor and a cathode connected to the second resistor. The control end is connected to a node between the diode and the second resistor; the output end is connected to a node between the diode and the first resistor. The output end outputs the command signals to the clock generator.
Abstract:
A voltage generating circuit for providing a voltage signal to a memory in a computer is provided. The voltage generating circuit includes a voltage selecting circuit and a control circuit. The control circuit, responsive to a first and a second voltage control signal, controls the voltage selecting circuit to gate a first voltage input or a second voltage input into a terminal of a regulating transistor. Another terminal of the regulating transistor outputs the voltage signal to the memory.
Abstract:
A weak battery warning circuit includes a warning circuit for generating an alarm; a battery having a cathode connected to ground; and a controlling circuit comprising a transistor, the transistor having an emitter for receiving an input voltage, a base connected to an anode of the battery via a base resistor, and a collector connected to the warning circuit and also connected to ground via a collector resistor. When the voltage of the battery reduces to a predetermined value, the controlling circuit controls the warning circuit to alarm.
Abstract:
An indicator light control circuit includes a basic input output system (BIOS) integrated circuit (IC), a microcontroller, a signal control unit, an electronic switch, and an indicator light. The microcontroller includes a general purpose input output (GPIO) pin. When different operating options of the indicator light are set into and by the BIOS IC, the BIOS IC controls the GPIO pin of the microcontroller to output command signals, such as a low voltage signal, a high voltage signal and pulse signals, then the signal control unit generates and outputs signals according to the command signals. Thus, the electronic switch is operated to turn on or turn off or to pulse when controlling the operation of the indicator light(s).