Abstract:
A heat block for holding an electronic device is disclosed. The heat block comprises a base and at least one discharge device. The discharge device is disposed on the base. The discharge device is electrically conductive and is grounded. When the electronic device is placed on the base, the discharge device is in contact with an electrical contact of the electronic device.
Abstract:
A memory cell structure. A first conductive line is cladded by at least two first ferromagnetic layers respectively having a first easy axis and a second easy axis, a nano oxide layer located between the first ferromagnetic layers, and a first pinned ferromagnetic layer. The first and second easy axes are 90 degree twisted-coupled with the first easy axis parallel to the length of the first conductive line and the second easy axis perpendicular to the length of the first conductive line. A storage device is adjacent to the first conductive line, receiving a magnetic field generated from a current flowing through the first conductive line.
Abstract:
Disclosed herein are new MIM structures having increased capacitance with little or no tunneling current, and related methods of manufacturing the same. In one embodiment, the new MIM structure comprises a first electrode comprising a magnetic metal and having a magnetic moment aligned in a first direction, and a second electrode comprising a magnetic metal and having a magnetic moment aligned in a second direction antiparallel to the first direction. In addition, such an MIM structure comprises a dielectric layer formed between the first and second electrodes and contacting the first and second magnetic metals.
Abstract:
A telescopic pneumatic device comprises an outer cylinder, an inner cylinder disposed in the outer cylinder and having a cylinder wall defining an air chamber, a piston mounted in the air chamber and having a piston rod connected thereto, a flow passage provided between the cylinder wall and the outer cylinder, and a control valve operable to permit or interrupt fluid communication between the flow passage and the air chamber. The inner cylinder is made of a rigid plastic material and includes a valve mounting part for receiving the control valve, the valve mounting part being formed in one piece with the cylinder wall.
Abstract:
A door closer includes a closer casing, a pivot unit, and a length-variable damping cylinder. The pivot unit includes a pivot axle, a cam member, and a cam follower member. The pivot axle has a drive end portion that extends into and that is retained rotatably in the closer casing, and a coupling end portion that extends out of the closer casing. The cam member is mounted co-rotatably on the drive end portion of the pivot axle. The cam follower member is disposed in the closer casing, and is acted upon by the cam member. The damping cylinder is disposed in the closer casing, and has one end coupled to the cam follower member and an opposite end anchored to the closer casing.
Abstract:
A system for adjusting radiation target sites dynamically according to the moving states of a target object and for creating a lookup table of the moving states includes a detection chip, a radiation generation device, and a lookup table. The detection chip can be fixed on the target object to detect the current moving state of the target object. The detection chip or the radiation generation device, both configured for wireless signal transmission to each other, can activate or deactivate the radiation emitters of the radiation generation device individually according to the current moving state of the target object and the contents of the lookup table. As the system uses wireless transmission, and the lookup table has recorded the working state of each radiation emitter in each moving state of the target object, radiotherapy can be performed without a large number of tubes or sensors.
Abstract:
A party popper contains: a body which includes two first openings defined on two ends of the body respectively. A flexible push portion is mounted on an end of the body, and a launchable cylinder is slidably accommodated in the body. The body includes a surrounding rib fitted thereon, and the flexible push portion is configured to drive the launchable cylinder to slide until the launchable cylinder is stopped by the surrounding rib. Multiple launchable objects are launched from the launchable cylinder inertially, thus launching the multiple launchable objects safely.
Abstract:
An improved PMA STT MTJ storage element, and a method for forming it, are described. By inserting a suitable oxide layer between the storage and cap layers, improved PMA properties are obtained, increasing the potential for a larger Eb/kT thermal factor as well as a larger MR. Another important advantage is better compatibility with high processing temperatures, potentially facilitating integration with CMOS.
Abstract:
A synthetic antiferromagnetic (SAF) structure for a spintronic device is disclosed and has an AP2/antiferromagnetic (AF) coupling/CoFeB configuration. The SAF structure is thinned to reduce the fringing (Ho) field while maintaining high coercivity. The AP2 reference layer has intrinsic perpendicular magnetic anisotropy (PMA) and induces PMA in a thin CoFeB layer through AF coupling. In one embodiment, AF coupling is improved by inserting a Co dusting layer on top and bottom surfaces of a Ru AF coupling layer. When AP2 is (Co/Ni)4, and CoFeB thickness is 7.5 Angstroms, Ho is reduced to 125 Oe, Hc is 1000 Oe, and a balanced saturation magnetization-thickness product (Mst)=0.99 is achieved. The SAF structure may also be represented as FL2/AF coupling/CoFeB where FL2 is a ferromagnetic layer with intrinsic PMA.