Abstract:
Provided is fluoroalkyl silicone of the formula (I): wherein each R1 is independently an alkyl or aryl; Rf is a perfluoroalkyl group, optionally substituted by one or more in-chain —O—, .S— or —NRf1— heteroatoms, where Rf1 is a perfluoroalkyl preferably a C1-C6 perfluoroalkyl; R3 is —H, —OR4; where R4 is a C1-C4 alkyl n is 0 to 2000; m may be zero; p may be zero, n+m+p is at least one; q is at least 3; R5 is H, alkyl, aryl-(CH2)n—CF2CHF—O—Rf; or R3; wherein the fluoroalkyl silicone has at least one fluorinated group of the formula (CH2)q—O—CF2CHF—O—Rf.
Abstract:
Described herein is a melt-processible polymer composition comprising: a non-fluorinated melt-processible polymer; and a fluoropolymer derived from the polymerization of a monomer and a sulfinate-containing molecule, wherein the sulfinate-containing molecule is selected from the group consisting of: (a) CX1X3═CX2—(R)p—CZ1Z2—SO2M Formula (I) (b) Formula (II); and (c) combinations thereof, wherein X1, X2, and X3 are each independently selected from H, F, Cl, a C1 to C4 alkyl group, and a C1 to C4 fluorinated alkyl group; R is a linking group; Z1 and Z2 are independently selected from F, CF3, and a perfluoroalkyl group; R1 and R2 are end-groups; p is 0 or 1; m is at least 2; and M is a cation.
Abstract:
Blended release materials including a blend of a fluoro-functional silicone release polymer and a fluoropolymer are described. Exemplary fluoropolymers include fluoroolefin-based polymers and linear fluoropolymers including linear fluoroacryaltes. Articles including such release materials such as release liners, and adhesive articles, including silicone adhesive articles, are also described.
Abstract:
Fluorocarbon- and urethane-(meth)acryl-containing additives and hardcoats. The hardcoats are particularly useful as a surface layer on an optical device.
Abstract:
Electronic telecommunication article is described comprising a crosslinked fluoropolymer layer. The crosslinked fluoropolymer layer comprises the reaction product of a fluoropolymer and a fluorinated curing agent. Suitable fluorinated curing agent may comprise amine groups or at least one amine group in combination with one or more alkoxy silane groups. Also described are compositions comprising a fluoropolymer and a fluorinated curing agent and optionally fluorinated solvent; as well as methods of making coated substrates and articles.
Abstract:
An electronic telecommunication article is described comprising a layer of fluoropolymer composition comprising an uncrosslinked fluoropolymer comprising at least 80, 85, or 90% by weight of polymerized units perfluorinated monomers including one or more unsaturated perfluorinated alkyl ethers. In typical embodiments, the uncrosslinked fluoropolymer comprises at least 10, 20, or 30 wt. % of one or more unsaturated perfluorinated alkyl ethers. The uncrosslinked fluoropolymer may be characterized as amorphous. The uncrosslinked fluoropolymer is soluble in fluorinated solvent. Also described are coated (e.g. copper) substrates, methods, and compositions.
Abstract:
Electronic telecommunication articles are described comprising a layer of fluoropolymer composition comprising a fluoropolymer or fluoropolymer blend comprising at least 1 wt. % and less than 30 wt. % of polymerized units of unsaturated (per)fluorinated alkyl ether(s). Also described are methods of making a coated substrate, a substrate comprising a fluoropolymer composition, and fluoropolymer compositions.
Abstract:
Electronic telecommunication articles are described comprising a crosslinked fluoropolymer layer. In typical embodiments, the crosslinked fluoropolymer layer is a substrate, patterned (e.g. photoresist) layer, insulating layer, passivation layer, cladding, protective layer, or a combination thereof. Also describes are methods of making an electronic telecommunications article and method of forming a patterned fluoropolymer layer. The fluoropolymer preferably comprises at least 80, 85, or 90% by weight of polymerized units of perfluorinated monomers and cure sites selected from nitrile, iodine, bromine, and chlorine. Illustrative electronic communication articles include integrated circuits, printed circuit boards, antennas, and optical fiber cables. Fluoropolymer compositions are also described.
Abstract:
Described herein is an oligomer according to formula I: (I) wherein Y is an anionic group selected from the group consisting of: sulfates, carboxylates, phosphate, phosphonate, and sulfonate, wherein each X1, X2, and X3 are independently selected from F, Cl, H, and CF3; R is a linking group; each Z1 and Z2 is independently selected from F and CF3; m is at least 2; and R1 and R2 are end groups, wherein the oligomer comprises substantially no pendant functional groups, except those selected from the group consisting of: sulfates, carboxylates, phosphate, phosphonate, and sulfonate.