Abstract:
A display may receive image data to be displayed for a user of an electronic device. Display driver circuitry in the display may analyze the data to detect static data. The image data may contain static frames of data or static portions of a frame of data. In response to detection of static data, the display driver circuitry can take actions to avoid display damage due to burn-in effects. The display driver circuitry may reduce a peak luminance value associated with a peak luminance control algorithm, may reduce display brightness, may map image data to reduced brightness levels, or may take other actions to ensure that display pixels in the display are not damaged. Temperature information may be used in determining how to classify information as static data and in determining how significantly to reduce display pixel drive currents in response to the detection of static image data.
Abstract:
A display that utilizes a microelectromechanical (MEMS) shutter module in order to accommodate a quantum dot sheet outside of the display backlight is provided. The MEMS shutter module can be placed either above or below the quantum dot sheet in order to more efficiently control the color at each individual pixel, when the color is being rendered from the isotropic emissions of the quantum dot sheet.
Abstract:
An electronic device may include a display and a sensor under the display. The display may include an array of subpixels for displaying an image to a user of the electronic device. At least a portion of the array of subpixels may be selectively removed in a pixel removal region to improve optical transmittance to the sensor through the display. The pixel removal region may include a plurality of pixel free regions that are devoid of thin-film transistor structures, that are devoid of power supply lines, that have continuous open areas due to rerouted row/column lines, that are partially devoid of touch circuitry, that optionally include dummy contacts, and/or have selectively patterned display layers.
Abstract:
An electronic device may include a display and an optical sensor formed underneath the display. The electronic device may include a plurality of transparent windows that overlap the sensor. The resolution of the display panel may be reduced in some areas due to the presence of the transparent windows. To increase the apparent resolution of the display in portions of the display panel with the transparent windows, the display may include a light spreading layer that includes a plurality of diffractive elements. The light spreading layer may spread visible light from the array of pixels such that the display resolution at the outer surface of the display is greater than at the display panel. The light spreading layer may selectively spread visible light but not infrared light. The display may also include a lens layer that focuses light onto the transparent windows.
Abstract:
An electronic device may have a display with pixels configured to display an image. The pixels may be overlapped by a cover layer. The display may have peripheral edges with curved cross-sectional profiles. An inactive area in the display may be formed along a peripheral edge of the display or may be surrounded by the pixels. Electrical components such as optical components may be located in the inactive area. An image transport layer may be formed from a coherent fiber bundle or Anderson localization material. The image transport layer may overlap the pixels, may have an opening that overlaps portions of the inactive area, may have an output surface that overlap portions of the inactive area, and/or may convey light associated with optical components in the electronic device.
Abstract:
Systems and methods described herein may utilize a non-linear scaling relationship to scale brightness of selective portions of the display in a manner that reduces or eliminates perceivable banding effects. By non-linearly controlling changes in brightness of the display, a viewer may perceive a more uniform, linear dimming towards the relatively dimmer region without perceiving banding, leading to improved user experience when viewing the electronic display.
Abstract:
An electronic device may have a display overlapped by a cover layer. Portions of the surface of the display and cover layer may have curved profiles. The display may include a flexible substrate and may have bent edge portions protruding from a central region. Gaps may be formed between regions of pixels on a common substrate or between separate display panels. Gap-overlapping structures may overlap the gaps to hide internal components from view or to blend the appearance of gaps with the appearance of adjoining portions of a display layer. The gap-overlapping structures may include light sources such as crystalline semiconductor light-emitting diodes. The diodes may emit light through light diffusing structures. Protruding display layer fingers and other structures may be used to accommodate display cover layer surfaces with curved profiles such as corner surfaces of compound curvature.
Abstract:
An electronic device may have pixels. The pixels may form one or more displays. The displays may be flexible organic light-emitting diode displays or other displays. The electronic device may have first and second display layers that face away from each other and display images in different directions. Image transport layers may overlap the display layers and may have curved edges that overlap a sidewall portion of the electronic device. Image transport layers receive images at input surfaces and transport the received images to corresponding output surfaces. Image transport layers may be provided with hemispherical shapes and other shapes having output surfaces of compound curvature. A folding device may have first and second displays that are overlapped by respective first and second image transport layers that join over a hinge to block the hinge from view. A wristwatch device may have links or other structures with an image transport layer.
Abstract:
An electronic device may have a display layer for displaying images. An optical coupling layer having an input surface that receives light from the display panel may convey the light from the input surface to an output surface. The output surface may have different dimensions than the display layer and may have any desired shape. To account for the displacement of light between the active area and the outer surface of the optical coupling layer and to ensure the output image is perceived with the desired distortion, image data may be rendered for the output surface then modified to account for the distortion and displacement that will occur later when the image is transported by the optical coupling layer from the display active area to the output surface of the optical coupling layer. Image distortion control circuitry may modify the rendered image data based on a distortion map.
Abstract:
An electronic device may have a display that displays an image. The image may be viewed through a display cover layer that overlaps the display. The display cover layer may include an optical coupling layer such as a coherent fiber bundle. A pixel expansion layer such as a diffractive layer may be incorporated between the optical coupling layer and a protective layer. The diffractive layer may create duplicate pixels to occupy otherwise non-light-emitting areas on the output surface of the display cover layer. The diffractive layer may also create duplicate pixels that overlap adjacent pixels to allow for brightness averaging. An adhesive layer or the protective layer may be used to form diffractive elements for the diffractive layer. An adhesive layer having a high index of refraction may be interposed between the optical coupling layer and the display panel to mitigate undesired reflections of ambient light.