DIRECT REGRESSION ENCODER ARCHITECTURE AND TRAINING

    公开(公告)号:US20220121931A1

    公开(公告)日:2022-04-21

    申请号:US17384371

    申请日:2021-07-23

    Applicant: Adobe Inc.

    Abstract: Systems and methods train and apply a specialized encoder neural network for fast and accurate projection into the latent space of a Generative Adversarial Network (GAN). The specialized encoder neural network includes an input layer, a feature extraction layer, and a bottleneck layer positioned after the feature extraction layer. The projection process includes providing an input image to the encoder and producing, by the encoder, a latent space representation of the input image. Producing the latent space representation includes extracting a feature vector from the feature extraction layer, providing the feature vector to the bottleneck layer as input, and producing the latent space representation as output. The latent space representation produced by the encoder is provided as input to the GAN, which generates an output image based upon the latent space representation. The encoder is trained using specialized loss functions including a segmentation loss and a mean latent loss.

    3D-AWARE IMAGE SEARCH
    52.
    发明申请

    公开(公告)号:US20210294834A1

    公开(公告)日:2021-09-23

    申请号:US16821301

    申请日:2020-03-17

    Applicant: ADOBE INC.

    Abstract: Systems and methods for performing image search are described. An image search method may include generating a feature vector for each of a plurality of stored images using a machine learning model trained using a rotation loss term, receiving a search query comprising a search image with object having an orientation, generating a query feature vector for the search image using the machine learning model, wherein the query feature vector is based at least in part on the orientation, comparing the query feature vector to the feature vector for each of the plurality of stored images, and selecting at least one stored image of the plurality of stored images based on the comparison, wherein the at least one stored image comprises a similar orientation to the orientation of the object in the search image.

    Image searching by employing layered search constraints

    公开(公告)号:US11030236B2

    公开(公告)日:2021-06-08

    申请号:US15824836

    申请日:2017-11-28

    Applicant: ADOBE INC.

    Abstract: Systems and methods for searching digital content, such as digital images, are disclosed. A method includes receiving a first search constraint and generating search results based on the first search constraint. A search constraint includes search values or criteria. The search results include a ranked set of digital images. A second search constraint and a weight value associated with the second search constraint are received. The search results are updated based on the second search constraint and the weight value. The updated search results are provided to a user. Updating the search results includes determining a ranking (or a re-ranking) for each item of content included in the search results based on the first search constraint, the second search constraint, and the weight value. Re-ranking the search results may further be based on a weight value associated with the first search constraint, such as a default or maximum weight value.

    DETECTING OBJECTS USING A WEAKLY SUPERVISED MODEL

    公开(公告)号:US20190286932A1

    公开(公告)日:2019-09-19

    申请号:US15921492

    申请日:2018-03-14

    Applicant: Adobe Inc.

    Abstract: The present disclosure is directed toward systems and methods for detecting an object in an input image based on a target object keyword. For example, one or more embodiments described herein generate a heat map of the input image based on the target object keyword and generate various bounding boxes based on a pixel analysis of the heat map. One or more embodiments described herein then utilize the various bounding boxes to determine scores for generated object location proposals in order to provide a highest scoring object location proposal overlaid on the input image.

    Semantic-aware initial latent code selection for text-guided image editing and generation

    公开(公告)号:US12254597B2

    公开(公告)日:2025-03-18

    申请号:US17709221

    申请日:2022-03-30

    Applicant: Adobe Inc.

    Abstract: An item recommendation system receives a set of recommendable items and a request to select, from the set of recommendable items, a contrast group. The item recommendation system selects a contrast group from the set of recommendable items by applying a image modification model to the set of recommendable items. The image modification model includes an item selection model configured to determine an unbiased conversion rate for each item of the set of recommendable items and select a recommended item from the set of recommendable items having a greatest unbiased conversion rate. The image modification model includes a contrast group selection model configured to select, for the recommended item, a contrast group comprising the recommended item and one or more contrast items. The item recommendation system transmits the contrast group responsive to the request.

    Media enhancement using discriminative and generative models with feedback

    公开(公告)号:US12136189B2

    公开(公告)日:2024-11-05

    申请号:US17172744

    申请日:2021-02-10

    Applicant: ADOBE INC.

    Abstract: The present disclosure describes systems and methods for image enhancement. Embodiments of the present disclosure provide an image enhancement system with a feedback mechanism that provides quantifiable image enhancement information. An image enhancement system may include a discriminator network that determines the quality of the media object. In cases where the discriminator network determines that the media object has a low image quality score (e.g., an image quality score below a quality threshold), the image enhancement system may perform enhancement on the media object using an enhancement network (e.g., using an enhancement network that includes a generative neural network or a generative adversarial network (GAN) model). The discriminator network may then generate an enhancement score for the enhanced media object that may be provided to the user as a feedback mechanism (e.g., where the enhancement score generated by the discriminator network quantifies the enhancement performed by the enhancement network).

    Image segmentation using text embedding

    公开(公告)号:US12008698B2

    公开(公告)日:2024-06-11

    申请号:US18117155

    申请日:2023-03-03

    Applicant: Adobe Inc.

    Abstract: A non-transitory computer-readable medium includes program code that is stored thereon. The program code is executable by one or more processing devices for performing operations including generating, using a model, a learned image representation of a target image. The operations further include generating, using a text embedding model, a text embedding of a text query. The text embedding and the learned image representation of the target image are in a same embedding space. Additionally, the operations include convolving the learned image representation of the target image with the text embedding of the text query. Moreover, the operations include generating an object-segmented image based on the convolving of the learned image representation of the target image with the text embedding.

    Textual design agent
    60.
    发明授权

    公开(公告)号:US11886793B2

    公开(公告)日:2024-01-30

    申请号:US17466679

    申请日:2021-09-03

    Applicant: ADOBE INC.

    CPC classification number: G06F40/109 G06F40/103 G06F40/106 G06F40/166

    Abstract: Embodiments of the technology described herein, are an intelligent system that aims to expedite a text design process by providing text design predictions interactively. The system works with a typical text design scenario comprising a background image and one or more text strings as input. In the design scenario, the text string is to be placed on top of the background. The textual design agent may include a location recommendation model that recommends a location on the background image to place the text. The textual design agent may also include a font recommendation model, a size recommendation model, and a color recommendation model. The output of these four models may be combined to generate draft designs that are evaluated as a whole (combination of color, font, and size) for the best designs. The top designs may be output to the user.

Patent Agency Ranking