Abstract:
A stent having a stent pattern including a plurality of cylindrical rings, each ring including a plurality of diamond-shaped cells having four curved elements defining apices of the diamond-shaped cells is disclosed herein.
Abstract:
Disclosed is a stent comprising a bioabsorbable polymeric scaffolding; and a plurality of depots in at least a portion of the scaffolding, wherein the plurality of depots comprise a bioabsorbable material, wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the depots.
Abstract:
Disclosed herein is a stent comprising: a bioabsorbable polymeric scaffolding; and a coating comprising a bioabsorbable material on at least a portion of the scaffolding, wherein the degradation rate of all or substantially all of the bioabsorbable polymer of the scaffolding is faster than the degradation rate of all or substantially all of the bioabsorbable material of the coating.
Abstract:
The invention provides an implantable medical device comprising: a structural element, wherein the structural element includes: a continuous phase comprising a first polymer; a discrete phase within the continuous phase, wherein the discrete phase has a second polymer including discrete phase segments; and anchor segments that have substantially the same chemical make up as the first polymer of the continuous phase; wherein at least some of the anchor segments have partially or completely phase-separated from the discrete phase into the continuous phase.
Abstract:
Described here are devices and methods for dilating tissues. In other variations, the dilatation device comprises a slotted or expandable tube that may expand to dilate tissue. In still other variations, the dilatation device comprises two or more hinged or movable plate members that separate to dilate tissue. In yet other variations, the dilation device may comprise one or more flexible members. One or more portions of the dilatation device may be detachable from the device in the body, and dilatation device may release one or more implants into the body. In some of these variations, the dilatation device may additionally be used to expand one or more implants or other devices within the body. In some variations the dilatation device may release one or more substances that may hold dilated tissue in a dilated configuration.
Abstract:
Disclosed is a method for fabricating a stent, the method comprising: positioning a polymeric tube inside a mold, wherein a high thermally conductive element covers at least a portion of the outer surface of the mold, the high thermally conductive element having a thermal conductivity that is greater than that of the mold; heating at least a portion of the mold; radially expanding the tube against the mold; and fabricating a stent from the radially expanded tube.