Abstract:
A system for monitoring ablation size is provided and includes a power source including a microprocessor for executing at least one control algorithm. A microwave antenna is configured to deliver microwave energy from the power source to tissue to form an ablation zone. An ablation zone control module is in operative communication with a memory associated with the power source. The memory includes one or more data look-up tables including data pertaining to a control curve varying over time and being representative of one or more electrical parameters associated with the microwave antenna. Points along the control curve correspond to a value of the electrical parameters and the ablation zone control module triggers a signal when a predetermined threshold value of the electrical parameter(s) is measured corresponding to the radius of the ablation zone.
Abstract:
An electrosurgical ablation system includes an energy source adapted to supply energy to an energy delivery device. The energy delivery device includes a handle assembly configured to couple a pair of antennas extending from a distal end thereof to the energy source for application of energy to tissue. A power splitting device is operatively associated with the handle assembly and has an input adapted to connect to the energy source and a pair of output channels operably coupled to the respective pair of antennas. A phase shifter is operatively associated with the handle assembly and is operably coupled to the pair of output channels. The phase shifter is configured to selectively shift a phase relationship between the pair of output channels.
Abstract:
A system for ultrasound interrogation of a lung including a memory, an electromagnetic (EM) board, an extended working channel (EWC), an EM sensor, a US transducer, and a processor. The memory stores a three dimensional (3D) model and pathway plan for navigating a luminal network. The EM board generates an EM field. The EWC is configured to navigate the luminal network toward a target following the pathway plan. The EM sensor extends distally from a distal end of the EWC and is configured to sense the EM field. The US transducer extends distally from a distal end of the EWC, generates US waves, and receives US waves reflected from the luminal network. The processor processes the sensed EM field to synchronize a location of the EM sensor in the 3D model, to process the reflected US waves to generate images, or to integrate the generated images with the 3D model.
Abstract:
A microwave ablation system is provided. The microwave ablation system includes a power source. A microwave antenna is adapted to connect to the power source via a coaxial cable feed including an inner conductor defining a portion of a radiating section of the microwave antenna, an outer conductor and dielectric shielding. The inner conductor loops back around and toward the outer conductor of the coaxial cable feed such that a distal end of the inner conductor is operably disposed adjacent the dielectric shielding. The inner conductor includes one or more reactive components disposed thereon forming a reactively-loaded loop configuration configured to maximize delivery of microwave energy from the power source to tissue such that a desired effect to tissue is achieved.
Abstract:
A method of manufacturing a surgical instrument includes charging a first component to a first voltage, charging a second component to a second voltage such that a pre-determined voltage differential is established between the first and second components, axially moving at least one of the first and second components relative to the other, monitoring an electrical characteristic to determine whether an axial distance between the first and second components is equal to a target axial distance, and retaining the first and second components in fixed position relative to one another once the axial distance between the first and second components is equal to the target axial distance.
Abstract:
A system for ultrasound interrogation of a lung includes a memory, an electromagnetic (EM) board, an extended working channel (EWC), an EM sensor, a US transducer, and a processor. The memory stores a three dimensional (3D) model, a pathway plan for navigating a luminal network. An EM board generates an EM field. The EWC is configured to navigate the luminal network of a patient toward a target following the pathway plan and the EM sensor extends distally from the EWC and senses the EM field. The US transducer extends distally from a distal end of the EWC and generates US waves and receives US waves reflected from the luminal network and the processor processes the sensed EM field to synchronize a location of the EM sensor in the 3D model, to process the reflected US waves to generate images, or to integrate the generated images with the 3D model.
Abstract:
A surgical system includes a power supply, a power stage coupled to the power supply for converting electric energy to a power signal, an audio output device, a sensor, and a controller coupled to the power supply, the power stage, and the audio output device. The controller is operably coupled to the sensor. The power stage is configured to transmit the power signal to a surgical instrument such as an electrosurgical instrument or a microwave instrument. The sensor may be disposed on the surgical instrument. The controller causes the audio output device to output sensory feedback during operation of the surgical generator based on sensor signals received from the sensor during a surgical procedure.
Abstract:
A microwave energy delivery and measurement system, including a microwave generator and a microwave energy delivery device, for performing medical procedures, and a remote power coupler system for measuring one or more parameters of the microwave energy signal including a remote RF sensor housed in the microwave energy delivery device and a power coupler processer coupled with the processing unit of the microwave energy delivery device.
Abstract:
A microwave ablation device including a cable assembly configured to connect a microwave ablation device to an energy source and a feedline in electrical communication with the cable assembly. The microwave ablation device further includes a balun on an outer conductor of the feedline, and a temperature sensor on the balun sensing the temperature of the balun.
Abstract:
A system for monitoring ablation size is provided and includes a power source including a microprocessor for executing at least one control algorithm. A microwave antenna is configured to deliver microwave energy from the power source to tissue to form an ablation zone. An ablation zone control module is in operative communication with a memory associated with the power source. The memory includes one or more data look-up tables including data pertaining to a control curve varying over time and being representative of one or more electrical parameters associated with the microwave antenna. Points along the control curve correspond to a value of the electrical parameters and the ablation zone control module triggers a signal when a predetermined threshold value of the electrical parameter(s) is measured corresponding to the radius of the ablation zone.