Abstract:
Non-pneumatic resilient wheel (10), that is supported structurally and defines three perpendicular directions, circumferential (X), axial (Y) and radial (Z). The wheel comprises a hub (11); an annular band referred to a shear band (13) comprising at least one inner circumferential membrane (14) and one outer circumferential membrane (16) that are oriented in the circumferential direction X; and a plurality of support elements (12) that connect the hub (11) to the inner circumferential membrane (14). The two membranes (14, 16) are connected to one another, in zones (17) referred to as anchoring zones, by means of a series (15A, 15B, 15C), that extends in the circumferential direction (X), of cylinder structures (15) referred to as connecting cylindrical structures that are non-touching in the circumferential direction X. Each connecting cylindrical structure (15) comprises a plurality of elementary cylinders (15a, 15b) having their generatrix oriented along the axial direction Y, said elementary cylinders being fitted one inside the other and interconnected to one another in each anchoring zone (17).
Abstract:
Group B streptococcus (GBS) proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.
Abstract:
Group B streptococcus (GBS) proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.
Abstract:
The identification of a highly conserved, immunologically accessible antigen at the surface of Neisseria facilitates treatment, prophylaxis, and diagnosis of Neisseria diseases. This antigen is highly resistant to Proteinase K and has an apparent molecular weight of 22 kDa on SDS-PAGE. Specific polynucleotides encoding proteins of this class have been isolated from three Neisseria meningitidis strains and from one Neisseria gonorrhoeae strain. These polynucleotides have been sequenced, and the corresponding full-length amino acid sequences of the encoded polypeptides have been deduced. Recombinant DNA methods for the production of the Neisseria surface protein, and antibodies that bind to this protein are also disclosed.
Abstract:
Streptococcus proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.
Abstract:
The identification of a highly conserved, immunologically accessible antigen at the surface of Neisseria facilitates treatment, prophylaxis, and diagnosis of Neisseria diseases. This antigen is highly resistant to Proteinase K and has an apparent molecular weight of 22 kDa on SDS-PAGE. Specific polynucleotides encoding proteins of this class have been isolated from three Neisseria meningitidis strains and from one Neisseria gonorrhoeae strain. These polynucleotides have been sequenced, and the corresponding full-length amino acid sequences of the encoded polypeptides have been deduced. Recombinant DNA methods for the production of the Neisseria surface protein, and antibodies that bind to this protein are also disclosed.
Abstract:
Streptococcus proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.
Abstract:
The invention relates to a method for assisting in the driving of a vehicle during a braking test on said vehicle on a track, said track being divided into a plurality of adjacent strips (Z1, . . . , Zn) mainly extending lengthwise in the track, the width (Iz) of each strip being greater than or equal to the width of the tires of the vehicle, each strip being worn on each braking of the vehicle on said strip. The assistance method comprises a step of selecting at least one strip out of the plurality of strips of the track, said strip being selected according to its level of wear. The assistance method also comprises a step of determining a theoretical trajectory of the vehicle, such that, by following said theoretical trajectory, the vehicle is able to brake on the selected strip.