Abstract:
Ionic liquid bath plating systems, methods, and plating anodes are provided for depositing metallic layers over turbomachine components and other workpieces. In an embodiment, the method includes placing workpieces in a plurality of cell vessels such that the workpieces are at least partially submerged in plating solution baths, which are retained within the cell vessels when the plating system is filled with a selected non-aqueous plating solution. After plating anodes are positioned adjacent the workpieces in the plating solution baths, the plurality of cell vessels are enclosed with lids such that the plurality of cell vessels contain vessel headspaces above the plating solution baths. A first purge gas is then injected into the plurality of cell vessels to purge the vessel headspaces. The workpieces and the plating anodes are then energized to deposit metallic layers on selected surfaces of the workpieces utilizing an ionic liquid bath plating process.
Abstract:
Systems and methods for additive manufacturing support removal of an additive manufactured component are provided. The method includes additively manufacturing a built component including at least one support having a thickness, and gaseous carburizing the built component and the at least one support to form a carburized component and at least one carburized support. Each of the carburized component and the at least one carburized support have a carburization layer with a predefined depth. The method includes removing the carburization layer to form the component devoid of the at least one carburized support.
Abstract:
Embodiments of laminated stator cores suitable for usage in high temperature applications are provided, as are embodiments of methods for manufacturing high temperature laminated stator core. In one embodiment, the method includes obtaining a plurality of coated laminates each comprising a laminate over which a coating precursor layer is formed. The coating precursor layer contain inorganic dielectric particles having a softening point. The plurality of coated laminates are arranged in a laminate stack, which is then fired at temperatures equal to or greater than the softening point of the inorganic dielectric particles. During firing, a compressive force is applied to the laminate stack sufficient to consolidate the inorganic dielectric particles into a plurality of coherent interlaminate dielectric layers electrically insulating and bonding together the plurality of coated laminates as the high temperature laminated stator core.
Abstract:
Methods are disclosed for fabricating heat exchangers and Heat Exchanger (HX) tubes, as are heat exchangers fabricated in accordance with such methods. In embodiments, the method includes the steps or processes of obtaining a Non-Equilibrium Alloy (NEA) feedstock powder comprised of an alloy matrix throughout which at least one minority constituent is dispersed. The first minority constituent precipitates from the alloy matrix when the NEA feedstock powder is exposed to temperatures exceeding a critical temperature threshold (TCRITICAL) for a predetermined time period. A cold spray process is carried-out to at least partially form the HX tubes from the NEA feedstock powder; and the HX tubes are subsequently installed in the heat exchanger. The HX tubes are exposed to a maximum temperature (TSPRAY_MAX) during the cold spray process, which is maintained below TCRITICAL to substantially preserve the non-equilibrium state of the NEA feedstock powder through cold spray deposition.
Abstract:
Ionic liquid bath plating methods for depositing aluminum-containing layers utilizing shaped consumable aluminum anodes are provided, as are turbomachine components having three dimensionally-tailored, aluminum-containing coatings produced from such aluminum-containing layers. In one embodiment, the ionic liquid bath plating method includes the step or process of obtaining a consumable aluminum anode including a workpiece-facing anode surface substantially conforming with the geometry of the non-planar workpiece surface. The workpiece-facing anode surface and the non-planar workpiece surface are positioned in an adjacent, non-contacting relationship, while the workpiece and the consumable aluminum anode are submerged in an ionic liquid aluminum plating bath. An electrical potential is then applied across the consumable aluminum anode and the workpiece to deposit an aluminum-containing layer onto the non-planar workpiece surface. In certain implementations, additional steps are then performed to convert or incorporate the aluminum-containing layer into a high temperature aluminum-containing coating, such as an aluminide coating.
Abstract:
Ionic liquid bath plating systems, methods, and plating anodes are provided for depositing metallic layers over turbomachine components and other workpieces. In an embodiment, the method includes placing workpieces in a plurality of cell vessels such that the workpieces are at least partially submerged in plating solution baths, which are retained within the cell vessels when the plating system is filled with a selected non-aqueous plating solution. After plating anodes are positioned adjacent the workpieces in the plating solution baths, the plurality of cell vessels are enclosed with lids such that the plurality of cell vessels contain vessel headspaces above the plating solution baths. A first purge gas is then injected into the plurality of cell vessels to purge the vessel headspaces. The workpieces and the plating anodes are then energized to deposit metallic layers on selected surfaces of the workpieces utilizing an ionic liquid bath plating process.
Abstract:
Ionic liquid bath plating systems, methods, and plating anodes are provided for depositing metallic layers over turbomachine components and other workpieces. In an embodiment, the method includes placing workpieces in a plurality of cell vessels such that the workpieces are at least partially submerged in plating solution baths, which are retained within the cell vessels when the plating system is filled with a selected non-aqueous plating solution. After plating anodes are positioned adjacent the workpieces in the plating solution baths, the plurality of cell vessels are enclosed with lids such that the plurality of cell vessels contain vessel headspaces above the plating solution baths. A first purge gas is then injected into the plurality of cell vessels to purge the vessel headspaces. The workpieces and the plating anodes are then energized to deposit metallic layers on selected surfaces of the workpieces utilizing an ionic liquid bath plating process.
Abstract:
Embodiments of laminated stator cores suitable for usage in high temperature applications are provided, as are embodiments of methods for manufacturing high temperature laminated stator core. In one embodiment, the method includes obtaining a plurality of coated laminates each comprising a laminate over which a coating precursor layer is formed. The coating precursor layer contain inorganic dielectric particles having a softening point. The plurality of coated laminates are arranged in a laminate stack, which is then fired at temperatures equal to or greater than the softening point of the inorganic dielectric particles. During firing, a compressive force is applied to the laminate stack sufficient to consolidate the inorganic dielectric particles into a plurality of coherent interlaminate dielectric layers electrically insulating and bonding together the plurality of coated laminates as the high temperature laminated stator core.
Abstract:
Embodiments of a gas turbine engine actuation system are provided, as are embodiments of a high temperature actuator and methods for the manufacture thereof. In one embodiment, the gas turbine engine actuation system includes an actuated gas turbine engine component and a high temperature actuator, which has a rotor mechanically linked to the actuated gas turbine engine component and a stator surrounding at least a portion of the rotor. The stator includes, in turn, a coil support structure having a plurality of spokes extending radially therefrom. A plurality of pre-formed electromagnetic coils is circumferentially distributed about the coil support structure. Each of the plurality of pre-formed electromagnetic coils is inserted over at least one of the plurality of spokes in a radial direction. The stator further includes an inorganic dielectric material in which each of the plurality of pre-formed electromagnetic coils is at least partially embedded.
Abstract:
Embodiments of laminated stator cores suitable for usage in high temperature applications are provided, as are embodiments of methods for manufacturing high temperature laminated stator core. In one embodiment, the method includes obtaining a plurality of coated laminates each comprising a laminate over which a coating precursor layer is formed. The coating precursor layer contain inorganic dielectric particles having a softening point. The plurality of coated laminates are arranged in a laminate stack, which is then fired at temperatures equal to or greater than the softening point of the inorganic dielectric particles. During firing, a compressive force is applied to the laminate stack sufficient to consolidate the inorganic dielectric particles into a plurality of coherent interlaminate dielectric layers electrically insulating and bonding together the plurality of coated laminates as the high temperature laminated stator core.