Abstract:
A thin film transistor and method for fabricating the same are provided. The thin film transistor comprises a semiconductor layer having a MILC region that has first crystalline grains crystallized by MILC method and second crystalline grains disposed between the first crystalline grains and having different crystalline properties from the first crystalline grains.
Abstract:
A printing apparatus that can form an even thin film on a substrate, a method of controlling the printing apparatus, and a method of manufacturing a flat panel display are presented. The printing apparatus includes a table on which a substrate is mounted, a mask located on the table and having a mesh part framed by a supporter, a squeegee capable of moving across the mask to form a thin film on the substrate, a squeegee driver for driving the squeegee, and a controller for controlling the squeegee driver to stop the squeegee at a boundary area between the mesh part and the supporter for a predetermined time period.
Abstract:
Provided is a method of manufacturing a nano scale semiconductor device, such as a nano scale P-N junction device or a CMOS using nano particles without using a mask or a fine pattern. The method includes dispersing uniformly a plurality of nano particles on a semiconductor substrate, forming an insulating layer covering the nano particles on the semiconductor substrate, partly removing the upper surfaces of the nano particles and the insulating layer, selectively removing the nano particles from the insulating layer, and partly forming doped semiconductor layers in the semiconductor substrate by partly doping the semiconductor substrate through spaces formed by removing the nano particles.
Abstract:
A single side band (SSB) modulator module using a carrier frequency includes: first and second Mach-Zender interferometers for modulating the carrier frequency and first and second signals into an SSB signal; and an arm, which is connected to both ends at which the first and second Mach-Zender interferometers are connected, splits the carrier frequency, and outputs a split portion to the first and second Mach-Zender interferometers.
Abstract:
A display device includes a first substrate, light emitting elements formed over the first substrate, a second substrate facing the first substrate, and a sealing member between the first and the second substrate to combine them. The sealing member is patterned to expose the light emitting elements. The sealing member may include black colored material to improve contrast, and dehydrating material may be part of the device to absorb moisture and/or oxygen. Accordingly, the transmittance of light generated from the light emitting elements increases and the luminance of display device improves.
Abstract:
Off-axis projection optics that includes first and second mirrors positioned off-axis and sharing a confocal point that are arranged to reduce linear astigmatism. If a distance between an object plane and the first mirror is l1, an incident angle of light coming from the object plane to the first mirror is i1, a distance between the first mirror and the confocal point is l1′, a distance between the confocal point and the second mirror is l2, an incident angle of light coming from the first mirror to the second mirror is i2, and a distance between the second mirror and an image plane is l2′, the off-axis projection optics may satisfy the following equation: l 1 ′ + l 1 l 1 tan i 1 = l 2 ′ + l 2 l 2 tan i 2 .
Abstract:
A refrigerator and a method of controlling the same. The refrigerator includes: tags attached to goods stored in a storage chamber; a reader, including a plurality of antennas having different identification distances, identifying the tags using the antennas; and a control unit detecting locations of the tags attached to goods stored in the storage chamber using the different identification distances of the antennas.
Abstract:
A method of fabricating a high-sensitivity image sensor is disclosed. The disclosed method comprises: etching a predetermined region of active silicon and a buried oxide layer by using a mask over an SOI substrate to expose an N-type silicon substrate; implanting P-type ions into the exposed N-type silicon substrate to form a P-type region; forming crossed active silicon by patterning the rest of the active silicon not etched while the active silicon is etched to expose the N-type silicon substrate; implanting P-type ions into first two predetermined regions facing each other of the crossed active silicon to form P-type regions; implanting N-type ions into second two predetermined regions facing each other except for the P-type regions of the crossed active silicon to form N-type regions; forming a gate oxide layer and a gate electrode on the crossed active silicon; and forming a connection part to connect the P-type region of the crossed active silicon to the P-type region of the silicon substrate.
Abstract:
A method of fabricating a high-sensitivity image sensor is disclosed. The disclosed method comprises: etching a predetermined region of active silicon and a buried oxide layer by using a mask over an SOI substrate to expose an N-type silicon substrate; implanting P-type ions into the exposed N-type silicon substrate to form a P-type region; forming crossed active silicon by patterning the rest of the active silicon not etched while the active silicon is etched to expose the N-type silicon substrate; implanting P-type ions into first two predetermined regions facing each other of the crossed active silicon to form P-type regions; implanting N-type ions into second two predetermined regions facing each other except for the P-type regions of the crossed active silicon to form N-type regions; forming a gate oxide layer and a gate electrode on the crossed active silicon; and forming a connection part to connect the P-type region of the crossed active silicon to the P-type region of the silicon substrate.
Abstract:
The present invention relates to a photodetector using MOSFET with quantum channels and a method for making thereof. A photodetector using MOSFET with quantum channels according to the present invention comprises a quantum channel formed on an activated SOI wafer, a gate oxide film covering said quantum channel; a gate formed so as to control carrier current at said quantum channel; a source and a drain formed at both ends of said channel area; and metal layers connected with said gate, said source and said drain. Thus, the photodetector according to the present invention can obtain more excellent photocurrent characteristics compared with the existing SOI MOSFET device by forming quantum channels on the SOI MOSFET. The MOSFET with quantum channels according to the present invention can be used as a good photodetector maintaining advantages of the existing MOSFET such as ease in integration and high speed.