Abstract:
An anchoring structure for a metal structure of a semiconductor device includes an anchoring recess structure having at least one overhanging side wall, the metal structure being at least partly arranged within the anchoring recess structure.
Abstract:
A method of manufacturing a semiconductor device includes forming a continuous silicate glass structure over a first surface of a semiconductor body, including a first part of the continuous glass structure over an active area of the semiconductor body and a second part of the continuous glass structure over an area of the semiconductor body outside of the active area. A first composition of dopants included in the first part of continuous glass structure differs from a second composition of dopants of the second part of the continuous glass structure.
Abstract:
Methods for producing a semiconductor component that includes a transistor having a cell structure with a number of transistor cells monolithically integrated in a semiconductor body and electrically connected in parallel. In an example method, first trenches extending from the top side into the semiconductor body are produced, as are second trenches that each extend from the top side deeper into the semiconductor body than each of the first trenches. A first dielectric abutting on a first portion of the semiconductor body is produced at a surface of each of the first trenches. Also produced is a second dielectric at a surface of each of the second trenches. In each of the first trenches, a gate electrode is produced, after which a second portion of the semiconductor body is electrically insulated from the first portion of the semiconductor body by removing a bottom layer of the semiconductor body.
Abstract:
An arrangement is provided. The arrangement may include: a substrate having a front side and a back side, a die region within the substrate, a multi-purpose layer defining a back side of the die region, and an etch stop layer disposed over the multi-purpose layer between the multi-purpose layer and the back side of the substrate. The multi-purpose layer may be formed of an ohmic material, and the etch stop layer may be of a first conductivity type of a first doping concentration.
Abstract:
A test method in accordance with one or more embodiments may include: providing a semiconductor device to be tested, the semiconductor device including at least one device cell, the at least one device cell having at least one trench, at least one first terminal electrode region and at least one second terminal electrode region, at least one gate electrode, and at least one additional electrode disposed at least partially in the at least one trench, wherein an electrical potential of the at least one additional electrode may be controlled separately from electrical potentials of the at least one first terminal electrode region, the at least one second terminal electrode region and the at least one gate electrode; and applying at least one electrical test potential to at least the at least one additional electrode to detect defects in the at least one device cell.
Abstract:
A method for forming a semiconductor device includes carrying out an anodic oxidation of a surface region of a semiconductor substrate to form an oxide layer at a surface of the semiconductor substrate by generating an attracting electrical field between the semiconductor substrate and an external electrode within an electrolyte to attract oxidizing ions of the electrolyte, causing an oxidation of the surface region of the semiconductor substrate. Further, the method includes reducing the number of remaining oxidizing ions within the oxide layer, while the semiconductor substrate is within an electrolyte.
Abstract:
The invention relates to a semiconductor component comprising a semiconductor body, an insulation on the semiconductor body and a cell array arranged at least partly within the semiconductor body. The cell array has at least one p-n junction and at least one contact connection. The insulation is bounded in lateral direction of the semiconductor body by a circumferential diffusion barrier.
Abstract:
A semiconductor device includes a trench transistor cell array in a silicon semiconductor body with a first main surface and a second main surface opposite to the first main surface. A main lateral face of the semiconductor body between the first main surface and the second main surface has a first length along a first lateral direction parallel to the first and second main surfaces. The first length is equal or greater than lengths of other lateral faces of the semiconductor body. The trench transistor cell array includes predominantly linear gate trench portions. At least 50% of the linear gate trench portions extend along a second lateral direction or perpendicular to the second lateral direction. An angle between the first and second lateral directions is in a range of 45°±15°.
Abstract:
Various methods and apparatuses are provided relating to separation of a substrate into a plurality of parts. For example, first a partial separation is performed and then the partially separated substrate is completely separated into a plurality of parts.
Abstract:
A power semiconductor package includes a housing, a semiconductor chip embedded in the housing, and at least four terminals partially embedded in the housing and partially exposed to the outside of the housing. The semiconductor chip includes a first doping region in ohmic contact with a first metal layer, a second doping region in ohmic contact with a second metal layer, and a plurality of first trenches that includes gate electrodes and first field electrodes electrically insulated from the gate electrodes. A first terminal of the four terminals is electrically connected to the first metal layer, a second terminal of the four terminals is electrically connected to the second metal layer, a third terminal of the four terminals is electrically connected to the gate electrodes of the first trenches, and a fourth terminal of the four terminals is electrically connected to the first field electrodes of the first trenches.