Abstract:
An example system that allows a camera enabled application, such as an augmented reality application, to run in a protected area may include a first device including a camera, the camera including a secure mode of operation and a display, an image processing module configured to convert image data from the camera to encoded data when the camera is in the secure mode and protect image data stored in the system, an encryption module configured to encrypt encoded data from the image processing module, and a protected audiovisual path mechanism configured to securely send augmented encoded data to the display.
Abstract:
A method, system, and device for analyzing images captured by a vehicle-based camera includes establishing a communication connection between a mobile communication device and an in-vehicle computing system. Scanning data may be retrieved from a scanning data server by the mobile communication device and, in some embodiments, forwarded to the in-vehicle computing system. A vehicle-base camera may be used to capture one or more images. An image analysis module of the in-vehicle computing system or mobile communication device may be used to analyze the captured image(s) for a match between the image(s) and the scanning data. In response to identifying a match, the mobile communication device may notify the scanning data server of the identified match.
Abstract:
A method, device, and system for secure end-to-end audio recognition is disclosed. A client device launches an application that connects with a server. The client device and server exchange cryptographic keys and establish a secure connection and a shared cryptographic key. The server transmits an encrypted audio prompt to the client device. The client device decrypts the encrypted audio prompt and stores the decrypted audio prompt in secure memory inaccessible to the operating system using an audio engine of the client device. The audio engine then retrieves the audio and renders it for the user through the speakers of the client device. The client device captures the user's audio response with a microphone and stores the audio response in the secure memory. The stored audio response is encrypted and transmitted to the server.
Abstract:
A method, apparatus, system, and computer program product for an automated modular and secure boot firmware update. An updated boot firmware code module is received in a secure partition of a system, the updated boot firmware code module to replace one original boot firmware code module for the system. Only the one original boot firmware code module is automatically replaced with the updated boot firmware code module. The updated boot firmware code module is automatically executed with the plurality of boot firmware code modules for the system and without user intervention when the system is next booted. The updated boot firmware code module may be written to an update partition of a firmware volume, wherein the update partition of the firmware volume is read along with another partition of the firmware volume containing the plurality of boot firmware code modules when the system is booted.
Abstract:
Generally, this disclosure provides devices, systems and methods for cancelling an interfering audio signal. The system may include a mobile device including a microphone configured to capture an acoustic audio signal, the acoustic audio signal a combination of the interfering audio signal and a desired audio signal, the desired audio signal generated by a user of the mobile device. The system may also include a wireless communication module incorporated in the mobile device, to receive a reference signal through a side-channel, the reference signal associated with the interfering audio signal. The system may further include an acoustic echo cancellation module incorporated in the mobile device, the acoustic echo cancellation module to cancel the interfering audio signal from the captured acoustic audio signal, the cancellation based on the reference signal.
Abstract:
A method, system, and device for analyzing images captured by a vehicle-based camera includes establishing a communication connection between a mobile communication device and an in-vehicle computing system. Scanning data may be retrieved from a scanning data server by the mobile communication device and, in some embodiments, forwarded to the in-vehicle computing system. A vehicle-base camera may be used to capture one or more images. An image analysis module of the in-vehicle computing system or mobile communication device may be used to analyze the captured image(s) for a match between the image(s) and the scanning data. In response to identifying a match, the mobile communication device may notify the scanning data server of the identified match.
Abstract:
An example system that allows a camera enabled application, such as an augmented reality application, to run in a protected area may include a first device including a camera, the camera including a secure mode of operation and a display, an image processing module configured to convert image data from the camera to encoded data when the camera is in the secure mode and protect image data stored in the system, an encryption module configured to encrypt encoded data from the image processing module, and a protected audiovisual path mechanism configured to securely send augmented encoded data to the display.
Abstract:
A method of operating an electronic device comprises detecting access to private information stored in memory of the electronic device. The detecting is performed by a privacy management module downloadable to the electronic device as object code for execution on the electronic device and the access is performed by a client application program. The method further comprises tracking, using the privacy management module, the private information being accessed by the client application program, and reconfiguring the electronic device, using the privacy management module, to change the access to the private information by the client application program according to at least one privacy access policy stored in the electronic device.
Abstract:
A method, device, and system for secure end-to-end audio recognition is disclosed. A client device launches an application that connects with a server. The client device and server exchange cryptographic keys and establish a secure connection and a shared cryptographic key. The server transmits an encrypted audio prompt to the client device. The client device decrypts the encrypted audio prompt and stores the decrypted audio prompt in secure memory inaccessible to the operating system using an audio engine of the client device. The audio engine then retrieves the audio and renders it for the user through the speakers of the client device. The client device captures the user's audio response with a microphone and stores the audio response in the secure memory. The stored audio response is encrypted and transmitted to the server.
Abstract:
Technologies are described herein that allow a user to wake up a computing device operating in a low-power state and for the user to be verified by speaking a single wake phrase. Wake phrase recognition is performed by a low-power engine. In some embodiments, the low-power engine may also perform speaker verification. In other embodiments, the mobile device wakes up after a wake phrase is recognized and a component other than the low-power engine performs speaker verification on a portion of the audio input comprising the wake phrase. More than one wake phrases may be associated with a particular user, and separate users may be associated with different wake phrases. Different wake phrases may cause the device transition from a low-power state to various active states.