Abstract:
In an example, an apparatus comprises a plurality of execution units comprising at least a first type of execution unit and a second type of execution unit and logic, at least partially including hardware logic, to analyze a workload and assign the workload to one of the first type of execution unit or the second type of execution unit. Other embodiments are also disclosed and claimed.
Abstract:
Methods and apparatus relating to techniques for avoiding cache lookup for cold cache. In an example, an apparatus comprises logic, at least partially comprising hardware logic, to monitor a thread switching overhead parameter for an application executing in a processing system and in response to a determination that the thread switching overhead parameter exceeds a threshold, to activate a thread management algorithm to reduce thread switching in the processing system. Other embodiments are also disclosed and claimed.
Abstract:
A mechanism is described for facilitating intelligent thread scheduling at autonomous machines. A method of embodiments, as described herein, includes detecting dependency information relating to a plurality of threads corresponding to a plurality of workloads associated with tasks relating to a processor including a graphics processor. The method may further include generating a tree of thread groups based on the dependency information, where each thread group includes multiple threads, and scheduling one or more of the thread groups associated a similar dependency to avoid dependency conflicts.
Abstract:
By packing the depth data in a way that is independent of the number of samples, so that memory bandwidth is the same regardless of the number of samples, higher numbers of samples per pixel may be used without adversely affecting buffer cost. In some embodiments, the number of pixels per clock in a first level depth test may be increased by operating in the pixel domain, whereas previous solutions operated at the sample level.
Abstract:
Embodiments described herein include software, firmware, and hardware logic that provides techniques to perform arithmetic on sparse data via a systolic processing unit. One embodiment provides for data aware sparsity via compressed bitstreams. One embodiment provides for block sparse dot product instructions. One embodiment provides for a depth-wise adapter for a systolic array.
Abstract:
Methods and apparatus relating to data initialization techniques. In an example, an apparatus comprises a processor to read one or more metadata codes which map to one or more cache lines in a cache memory and invoke a random number generator to generate random numerical data for the one or more cache lines in response to a determination that the one more metadata codes indicate that the cache lines are to contain random numerical data. Other embodiments are also disclosed and claimed.
Abstract:
Methods and apparatus relating to techniques for multi-tile memory management. In an example, a graphics processor includes an interposer, a first chiplet coupled with the interposer, the first chiplet including a graphics processing resource and an interconnect network coupled with the graphics processing resource, cache circuitry coupled with the graphics processing resource via the interconnect network, and a second chiplet coupled with the first chiplet via the interposer, the second chiplet including a memory-side cache and a memory controller coupled with the memory-side cache. The memory controller is configured to enable access to a high-bandwidth memory (HBM) device, the memory-side cache is configured to cache data associated with a memory access performed via the memory controller, and the cache circuitry is logically positioned between the graphics processing resource and a chiplet interface.
Abstract:
One embodiment provides for a graphics processing unit to accelerate machine-learning operations, the graphics processing unit comprising a multiprocessor having a single instruction, multiple thread (SIMT) architecture, the multiprocessor to execute at least one single instruction; and a first compute unit included within the multiprocessor, the at least one single instruction to cause the first compute unit to perform a two-dimensional matrix multiply and accumulate operation, wherein to perform the two-dimensional matrix multiply and accumulate operation includes to compute an intermediate product of 16-bit operands and to compute a 32-bit sum based on the intermediate product.
Abstract:
Embodiments are generally directed to cache structure and utilization. An embodiment of an apparatus includes one or more processors including a graphics processor; a memory for storage of data for processing by the one or more processors; and a cache to cache data from the memory; wherein the apparatus is to provide for dynamic overfetching of cache lines for the cache, including receiving a read request and accessing the cache for the requested data, and upon a miss in the cache, overfetching data from memory or a higher level cache in addition to fetching the requested data, wherein the overfetching of data is based at least in part on a current overfetch boundary, and provides for data is to be prefetched extending to the current overfetch boundary.
Abstract:
Methods and apparatus relating to techniques for data compression. In an example, an apparatus comprises a processor receive a data compression instruction for a memory segment; and in response to the data compression instruction, compress a sequence of identical memory values in response to a determination that the sequence of identical memory values has a length which exceeds a threshold. Other embodiments are also disclosed and claimed.