Abstract:
Embodiments are directed to a method of forming a leakage current stopper of a fin-type field effect transistor (FinFET). The method includes forming at least one fin having an active region, a non-active region and a channel region in the active region. The method further includes exposing a surface of the non-active region, wherein the exposed surface leads to a portion of the non-active region that is substantially underneath the channel region. The method further includes implanting dopants through the exposed surface of the non-active region to form the leakage current stopper region.
Abstract:
Techniques and structures for controlling etch-back of a finFET fin are described. One or more layers may be deposited over the fin and etched. Etch-back of a planarization layer may be used to determine a self-limited etch height of one or more layers adjacent the fin and a self-limited etch height of the fin. Strain-inducing material may be formed at regions of the etched fin to induce strain in the channel of a finFET.
Abstract:
A method for making a semiconductor device may include forming a plurality of semiconductor fins on a substrate, forming a gate overlying the plurality of semiconductor fins, forming respective unmerged semiconductor regions on the semiconductor fins on opposing sides of the gate, and forming a dielectric layer overlying the unmerged semiconductor regions. The method may further include etching the dielectric layer to define contact recesses having recess bottoms exposing the unmerged semiconductor regions, forming a respective semiconductor layer on each of the exposed unmerged semiconductor regions to extend outwardly from adjacent portions of the recess bottom, and siliciding each of the semiconductor layers to define respective source and drain contacts extending outwardly from adjacent portions of the recess bottom.
Abstract:
A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
Abstract:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
Abstract:
A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate including an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about 1e18 to about 1e20 atoms/cm3 and contacting the epitaxial contacts.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.
Abstract:
Tapered source and drain contacts for use in an epitaxial FinFET prevent short circuits and damage to parts of the FinFET during contact processing, thus improving device reliability. The inventive contacts feature tapered sidewalls and a pedestal where electrical contact is made to fins in the source and drain regions. The pedestal also provides greater contact area to the fins, which are augmented by extensions. Raised isolation regions define a valley around the fins. During source/drain contact formation, the valley is lined with a conformal barrier that also covers the fins themselves. The barrier protects underlying local oxide and adjacent isolation regions against gouging while forming the contact. The valley is filled with an amorphous silicon layer that protects the epitaxial fin material from damage during contact formation. A simple tapered structure is used for the gate contact.
Abstract:
A semiconductor device that includes a first fin structure in a first portion of a substrate, and a second fin structure in a second portion of the substrate, wherein the first portion of the substrate is separated from the second portion of the substrate by at least one isolation region. A gate structure present extending from the first fin structure across the isolation region to the second fin structure. The gate structure including a first portion on the first fin structure including a first work function metal having at least one void, an isolation portion that is voidless present overlying the isolation region, and a second portion on the second fin structure including a second work function metal.