Abstract:
A workpiece made from a self passivating metal and having one or more surface regions defining a Beilby layer as a result of a previous metal shaping operation is activated for subsequent low temperature gas hardening by exposing the workpiece to the vapors produced by heating an oxygen-free nitrogen halide salt.
Abstract:
A preassembly for a conduit fitting includes an annular fitting component and at least a first conduit gripping device. The annular fitting component has an interior wall including an inboard surface having a first diameter, an outboard surface having a second diameter, and an intermediate surface recessed from the inboard surface by an outward facing inboard radial wall and recessed from the outboard surface by an inward facing outboard radial wall. The first conduit gripping device is retained within the annular fitting component and includes a body portion and an annular ring portion having an inner radial portion secured to a rear surface of the body portion, and a flange portion extending radially outward of the inner radial portion to define a projection extending radially outward of an outer circumferential surface of the first conduit gripping device, with an end portion of the projection being axially captured between the inboard radial wall and the outboard radial wall.
Abstract:
A conduit fitting preassembly includes an annular fitting component and at least a first conduit gripping device. The annular fitting component has an interior wall extending axially from a forward end to a rearward end, and a first projection extending radially inward from the interior wall. The first conduit gripping device is received within the annular fitting component and includes a second projection extending radially outward of an outer surface of the first conduit gripping device. The first projection includes an outward tapered rear surface and the second projection includes an inward tapered front surface. The rear surface of the first projection is radially aligned with the front surface of the second projection, such that when the first conduit gripping device is in a forward-most position, the first projection interlocks with the second projection to prevent axial withdrawal of the first conduit gripping device from the annular fitting component.
Abstract:
A fitting for a tube or pipe capable of functioning a high pressures having a first fitting component adapted to receive the conduit end; a conduit gripping device such as a ferrule or ferrules and a second fitting component that can be joined to the first fitting component to cause the conduit gripping device to grip the conduit and seal when assembled. In one aspect of the invention, the first fitting component is constructed from a material that is softer than the material used to construct the second fitting component. An additional aspect of the invention include a retaining portion on the second fitting component that constrains the tube gripping device against pressure. The retaining portion can also be configured to retain the tube gripping device to the second fitting component prior to installation and in a finger-tight condition. A further aspect of the invention includes a first fitting component in which an exterior portion of the component is work hardened radially outward from the tube gripping device. The fitting may optionally be provided with a structure to effect the pull-up by torque functionality.
Abstract:
The disclosure presents exemplary embodiments of a cartridge nut concept for conduit fittings. The cartridge nut concept may include the feature of loosely retaining one or more conduit gripping devices with a fitting component such as a male or female threaded nut. The cartridge nut concept may be realized using one or more geometry or shape features or characteristics of one or more conduit gripping devices. Still further, the cartridge nut concept may be realized in combination with a ferrule cartridge concept.
Abstract:
In an exemplary method for installing a fitting on a conduit, a fitting body is provided with a threaded end portion, a neck portion extending rearward from the threaded end portion, and an internal conduit socket extending axially into the neck portion and terminating at a counterbore. A conduit is inserted in the internal conduit socket of the fitting body. A fitting nut is pulled up on the fitting body to grip and seal a conduit gripping device against the conduit. Relative axial displacement of at least first and second reference locations on the neck portion is detected to determine whether the fitting is in a first fitting assembly condition or a second fitting assembly condition different from the first fitting assembly condition.
Abstract:
Apparatus and method for mechanically attached connections of conduits may include a conduit gripping member, a drive member, and a seal member, the drive member causing axial movement of the conduit gripping member to indent into an outer surface of the conduit when the assembly is pulled-up, the drive member causing the seal member to form a zero clearance seal at a location that is axially spaced from the conduit gripping member. The zero clearance seal may comprise a face seal arrangement including a gasket, and the conduit gripping member may be a ferrule, ring or other device that can grip and optionally seal against the conduit outer surface. The assembly may include a sensing function for detecting or sensing a characteristic or condition of an assembly component or the fluid or both. In one embodiment, a body coupling member has a two piece construction of a main body and a conduit socket insert. A flared fitting embodiment is also provided. Sensing functions are also incorporated into fittings other than just zero clearance fittings.
Abstract:
A ferrule for a metal tube fitting includes a body having a cylindrical interior wall that extends through the ferrule from a front end to a back end, a circumferential recess in the cylindrical interior wall so that the cylindrical interior wall has a first cylindrical portion that is axially forward of the recess and a second cylindrical portion that is axially rearward of the recess. The body includes a nose portion with a tapered outer surface and a flange. The body also includes an outer wall having a first outer wall portion that extends from the tapered outer surface of the nose portion. The first outer wall portion extending rearward to a tapered outer wall portion, the tapered outer wall portion extending from the first outer wall portion to the flange, the diameter of the first cylindrical portion being less than the diameter of the second cylindrical portion.
Abstract:
A fitting assembly is provided with a first fitting component having a stepped wall surface; and a second fitting component radially spaced from the first fitting component when the fitting assembly is in a finger tight condition prior to pull-up. When the second fitting component is displaced into contact with the stepped wall surface during fitting pull-up, the stepped wall surface assists in separating the first fitting component from the second fitting component upon fitting disassembly.
Abstract:
Apparatus and method for mechanically attached connections of conduits may include a conduit gripping member, a drive member, and a seal member, the drive member causing axial movement of the conduit gripping member to indent into an outer surface of the conduit when the assembly is pulled-up, the drive member causing the seal member to form a zero clearance seal at a location that is axially spaced from the conduit gripping member. The zero clearance seal may comprise a face seal arrangement including a gasket, and the conduit gripping member may be a ferrule, ring or other device that can grip and optionally seal against the conduit outer surface. The assembly may include a sensing function for detecting or sensing a characteristic or condition of an assembly component or the fluid or both. In one embodiment, a body coupling member has a two piece construction of a main body and a conduit socket insert. A flared fitting embodiment is also provided. Sensing functions are also incorporated into fittings other than just zero clearance fittings.