Abstract:
Systems and apparatuses are provided in which outlets are coupled to a power distribution unit (PDU) or PDU module in various configurations. The outlets may be coupled to a recessed surface within a PDU housing. The outlets may be coupled to a printed circuit board that is at least partially disposed within the PDU housing. The outlets may extend away from the recessed surface or printed circuit board towards or beyond a front face of the PDU housing.
Abstract:
Systems and apparatuses are provided in which outlets are coupled to a power distribution unit (PDU) or PDU module in various configurations. The outlets may be coupled to a recessed surface within a PDU housing. The outlets may be coupled to a printed circuit board that is at least partially disposed within the PDU housing. The outlets may extend away from the recessed surface or printed circuit board towards or beyond a front face of the PDU housing.
Abstract:
Systems and apparatuses are provided in which outlets are coupled to a power distribution unit (PDU) or PDU module in various configurations. The outlets may be coupled to a recessed surface within a PDU housing. The outlets may be coupled to a printed circuit board that is at least partially disposed within the PDU housing. The outlets may extend away from the recessed surface or printed circuit board towards or beyond a front face of the PDU housing.
Abstract:
A power distribution unit (PDU) disposable in an electrical equipment rack. The PDU has a housing, a power input penetrating the housing, outlets in the housing, a processor disposed in the housing, voltage and current sensors, and a voltage calculation procedure communicable with the processor. The processor samples voltage and current waveforms and calculates RMS values and other power parameters. A method of managing electrical loads each drawing electrical power from a PDU includes repeatedly sampling voltage across and current flowing through each of the loads, calculating raw RMS values of voltage and current, and scaling the raw RMS values to obtain corrected RMS voltage and current values and other power parameters.
Abstract:
Power distribution apparatus with input and output power sensing and a method of use. A power distribution unit includes a sensor that senses power parameters of power outputs and a power input, a processor, and a communication circuit. A power management system includes a power manager, a user interface, and a plurality of power distribution units that may be located in one or more equipment cabinets and data centers. The system may compute apparent power, RMS power, power factor, energy usage over time, power usage history, or environmental history for any or all of the power distribution units. The system may identify an under-utilized server connected to one of the power distribution units and initiate a shut-down of that server.
Abstract:
A power distribution unit including a plurality of outlet cores arranged along an outlet panel of a housing and mounted to one or more circuit boards with an unobstructed space between adjacent pairs of the plurality of outlet cores. The outlet cores each extend a portion of the distance between the circuit boards and the outlet panel, and the outlet panel includes a plurality of apertures each corresponding to an associated one of the plurality of outlet cores. One or more overcurrent protection devices are mounted in a non-outlet panel aligned along the length of the housing.
Abstract:
A polyphase power distribution and monitoring apparatus having sets of outputs for each phase of power and monitors for each phase of power disposed in the housing. Each monitor provides a visible display of current for an associated phase of power and an audible alarm for each phase of power if the current exceeds a predetermined value or falls below a predetermined value. In three-phase wye power systems, the apparatus preferably includes a neutral line monitor, including a neutral line current display and audio alarm, for the neutral line of the wye power circuit. The apparatus preferably is lightweight, elongated, portable, and mountable to the side of an electronic equipment rack. It may also include additional power monitoring systems such as network power monitoring tools for remotely monitoring the apparatus.
Abstract:
Described herein are various embodiments of a power distribution unit having modular components. For example, according to one embodiment, a power distribution unit can include a component portion that comprises at least two modules including outlet modules, circuit protection modules, power input modules, communications I/O modules, and display modules. Each of the at least two modules of the component portion can comprise at least one connection element and can be removably secured to one or more other of the at least two modules via the connection elements. The power distribution unit can also include a housing that defines an interior cavity. The component portion can be removably secured to the housing at least partially within the interior cavity.
Abstract:
Managing electrical power usage in a power distribution system. Power usage data indicative of electrical current flow through electrical outlets in the system are collected and displayed for a user. The user may select an outlet and issue a command to control current flow through that outlet. Environmental data may also be collected and displayed. Outlets in different Cabinet Power Distribution Units (CDUs) in different locations may be clustered for reporting and control. A database structure provides a “system” table for data descriptive of the system, a “tower” table for data descriptive of outlets and other elements in the system, an “infeed” table for data descriptive of input electrical power, and an “outlet” table for data descriptive of electrical power flowing through the outlets.
Abstract:
A power management device can include a housing, a power input associated with the housing, and a plurality of power outputs associated with the housing. At least certain power outputs can be connectable to one or more electrical loads external to the housing and to the power input. In some embodiments, a communications bus and one or more power control sections can be associated with the housing. In some embodiments, one or more power control sections can communicate with the communications bus and with one or more corresponding power outputs among the plurality of power outputs. In some embodiments, a power information display can communicate with the communications bus. If desired, a power information determining section can be associated with the housing and in communication with the communications bus. The power information determining section may communicate power-related information to the power information display.