Coexistence primitives in power line communication networks

    公开(公告)号:US11496184B2

    公开(公告)日:2022-11-08

    申请号:US16852700

    申请日:2020-04-20

    Abstract: Systems and methods for setting a carrier-sensing mechanism in a PLC node are disclosed. In a PLC standard, coexistence is achieved by having the nodes detect a common preamble and backing off by a Coexistence InterFrame Space (cEIFS) time period to help the node to avoid interfering with the other technologies. In one embodiment, a PHY primitive is sent from the PHY to the MAC know that there has been a preamble detection. A two-level indication may be used—one indication after receiving the preamble and other indication after decoding the entire frame. The MAC sets the carrier-sensing mechanism based on the preamble detection.

    Enhanced network security using packet fragments

    公开(公告)号:US11240216B2

    公开(公告)日:2022-02-01

    申请号:US16722371

    申请日:2019-12-20

    Abstract: A network system comprising a first network element and a second network element. The first network element is programmed to provide the step of first, communicating to the second network element a plurality of configuration parameter sets. Each configuration parameter set corresponds to a respective frame fragment and comprises a parameter value that differs in value from the parameter value in another configuration parameter set in the plurality of configuration parameter sets. The first network element also is programmed to provide the step of second, communicating a frame, to the second network element, in a plurality of frame fragments, wherein each frame fragment in the plurality of frame fragments is communicated according to a respective parameter value in the plurality of configuration parameter sets.

    SELECTIVE MULTIPLE-MEDIA ACCESS CONTROL

    公开(公告)号:US20210274593A1

    公开(公告)日:2021-09-02

    申请号:US17322987

    申请日:2021-05-18

    Abstract: Disclosed embodiments include a network device having a split network stack that includes a physical (PHY) layer associated with first and second media access control (MAC) protocol sublayers, a processing device, and memory storing instructions that, when executed by the processing device, cause the processing device to select a route through the split network stack that includes one of the first and second MAC protocol sublayers but not the other one of the first and second MAC protocol sublayers.

    Sleepy device operation in asynchronous channel hopping networks

    公开(公告)号:US11082086B2

    公开(公告)日:2021-08-03

    申请号:US16576345

    申请日:2019-09-19

    Abstract: A radio communications device includes a RTC configured to run even during sleep for receiving from a coordinator node (CN) in an asynchronous channel hopping WPAN an asynchronous hopping sequence (AHS) frame that includes the CN's hopping sequence. A processor implements a stored sleepy device operation in asynchronous channel hopping networks algorithm. The algorithm is for determining a time stamp for the AHS frame and the CN's initial timing position within the hopping sequence, storing the time stamp, going to sleep and upon waking up changing a frequency band of its receive (Rx) channel to an updated fixed channel. A data request command frame is transmitted by the device on the CN's listening channel that is calculated from the CN's hopping sequence, time stamp, CN's initial timing position and current time, and the device receives an ACK frame transmitted by the CN at the updated fixed channel of Rx operation.

    Authentication of networked devices having low computational capacity

    公开(公告)号:US10938803B2

    公开(公告)日:2021-03-02

    申请号:US16252262

    申请日:2019-01-18

    Abstract: Authentication of a networked device with limited computational resources for secure communications over a network. Authentication of the device begins with the supplicant node transmitting a signed digital certificate with its authentication credentials to a proxy node. Upon verifying the certificate, the proxy node then authenticates the supplicant's credentials with an authentication server accessible over the network, acting as a proxy for the supplicant node. Typically, this verification includes decryption according to a public/private key scheme. Upon successful authentication, the authentication server creates a session key for the supplicant node and communicates it to the proxy node. The proxy node encrypts the session key with a symmetric key, and transmits the encrypted session key to the supplicant node which, after decryption, uses the session key for secure communications. In some embodiments, the authentication server encrypts the session key with the symmetric key.

    Enhanced network security using packet fragments

    公开(公告)号:US10608998B2

    公开(公告)日:2020-03-31

    申请号:US15143460

    申请日:2016-04-29

    Abstract: A network system comprising a first network element and a second network element. The first network element is programmed to provide the step of first, communicating to the second network element a plurality of configuration parameter sets. Each configuration parameter set corresponds to a respective frame fragment and comprises a parameter value that differs in value from the parameter value in another configuration parameter set in the plurality of configuration parameter sets. The first network element also is programmed to provide the step of second, communicating a frame, to the second network element, in a plurality of frame fragments, wherein each frame fragment in the plurality of frame fragments is communicated according to a respective parameter value in the plurality of configuration parameter sets.

    Advanced switch node selection for power line communications network

    公开(公告)号:US10587476B2

    公开(公告)日:2020-03-10

    申请号:US15050163

    申请日:2016-02-22

    Abstract: An algorithm for the promotion of terminal nodes to switch nodes in a PLC network reduces overall network overhead and collisions, while ensuring the appropriate selection of a switch node and minimizing the number of levels in a PLC network. It also ensures that the terminal nodes with appropriate signal-to-noise ratios (SNRs) are promoted. It is desirable to have a network with fewer levels. The disclosed approach favors the nodes that are closer to the DC to promote them as switch nodes. This is achieved by waiting for a smaller number of PNPDUs for a node that is closer to the DC in comparison to a node that is farther away from the DC.

Patent Agency Ranking