Abstract:
A fan case for a gas turbine engine includes a fan case surrounding a fan with fan blades. A liner is disposed between the fan case and the fan and is spaced a radial distance from the fan case. A torque stop is arranged between the fan case and the liner. A method for reducing fan case liner loads is also disclosed.
Abstract:
A gas turbine engine includes a flex mount for a fan drive gear system. A very high speed fan drive turbine drives the fan drive gear system.
Abstract:
A gas turbine engine includes a fan shaft and a support which supports the fan shaft. The support defines a support lateral stiffness. A gear system drives the fan shaft. A flexible support at least partially supports the gear system, and defines a flexible support lateral stiffness with respect to the support lateral stiffness. An input to the gear system defines an input lateral stiffness with respect to the support lateral stiffness. A method of designing a gas turbine engine is also disclosed.
Abstract:
A fan drive gear system for a gas turbine engine includes a gear system that provides a speed reduction between a fan drive turbine and a fan and a mount flexibly supporting portions of the gear system. A lubrication system supporting the fan drive gear system provides lubricant to the gear system and removes thermal energy produced by the gear system. The lubrication system includes a capacity for removing energy equal to less than about 2% of energy input into the gear system.
Abstract:
A geared architecture for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan shaft and a frame which supports the fan shaft, the frame defines a frame stiffness. A plurality of gears drives the fan shaft. A flexible support at least partially supports the plurality of gears, the flexible support defines a flexible support stiffness that is less than the frame stiffness. An input coupling to the plurality of gears, the input coupling defines an input coupling stiffness with respect to the frame stiffness.
Abstract:
An airfoil for a gas turbine engine according to an example of the present disclosure includes, among other things, an airfoil section that extends from a root section. The airfoil section extends between a leading edge and a trailing edge in a chordwise direction and extends between a tip portion and the root section in a radial direction. The airfoil section defines a pressure side and a suction side separated in a thickness direction, and the airfoil section includes a metallic sheath that defines an internal cavity receiving a composite core. The root section defines at least one bore dimensioned to receive a retention pin. At least one damping element is received in the internal cavity and that selectively causes the airfoil section to stiffen.
Abstract:
A gas turbine engine mount for an aircraft wing including a link body having a first joint, a second joint and a linking structure connecting the first joint to the second joint. The linking structure includes at least a flexing portion and an elastic portion. The flexing portion is configured to flex during a load outside of an expected load window.
Abstract:
A turbofan engine includes a fan section. A turbine section is in driving engagement with the fan section through a geared architecture. A flexible support supports the geared architecture relative to an engine static structure. A deflection limiter includes at least one of an axially extending branch or a radially extending branch. A flexible output shaft is in driving engagement with the fan section and driven by the geared architecture. A speed change mechanism for a gas turbine engine is also disclosed.
Abstract:
A turbofan engine includes a fan section. A turbine section is in driving engagement with the fan section through a planetary gear system. The planetary gear system includes a plurality of planet gears surrounding a sun gear. A carrier supports the plurality of planet gears and includes a first carrier bearing flange. A ring gear surrounds the plurality of planet gears and includes a ring gear bearing flange. At least one ring gear carrier bearing engages the carrier bearing flange and the ring gear bearing flange. A speed change mechanism for a gas turbine is also disclosed.