Abstract:
Apparatus and methods for controlling electrostrictive transducer sensitivity in a pulse-echo medical ultrasound system. Certain characteristics of each transducer element are tested after manufacture and recorded on a storage medium. The stored data is then used, along with certain model relations, for monitoring certain operational parameters of the transducer during use, and feedback compensation applied for maintaining the transducer sensitivity substantially constant. The parameters to be monitored may include the temperature, acoustic pressure, input power, and a figure of merit determined from the dielectric constant and coupling coefficient.
Abstract:
A tunable ultrasonic probe of the that provides efficient electrical coupling of probe control lines to imaging system components and further provides for variable control over size of an effective acoustic aperture of the probe. The ultrasonic probe includes a body of a piezoelectric material that has a first surface and an opposing surface. A first set of electrodes is coupled with the first surface of the body. A second set of electrodes is also coupled with the first surface of the body and arranged so that each electrode of the second set substantially overlaps at least a respective one electrode of the first set. A third set of electrodes is coupled with the opposing surface of the body. At least one bias voltage source is coupled with the electrodes for substantially polarizing ceramic material within selected regions of the body. Switches are coupled with the first and second set of electrodes for changing an acoustic aperture of the probe by varying size of the selected polarized regions. The polarization of the selected regions of the piezoelectric material is controlled so as to variably tune a frequency of the beam of acoustic signals while controlling the acoustic aperture of the probe.
Abstract:
A method and apparatus for three dimensional ultrasonic scanning with reduced electronic switching and cabling requirements. The invention includes a body including a relaxor ferroelectric ceramic material and electrodes coupled to opposing surfaces of the body. Electronic switches select electrodes so as to select column regions of the body that are arranged adjacent to one another in a row extending radially outward from a central axis of the body. A bias voltage source is coupled with the electronic switches for substantially polarizing ceramic material within the selected column regions of the body. A sector controller dynamically configures the electronic switches to rotationally vary a position of the row arrangement of selected column regions. An oscillating voltage source excites the row of selected column regions to emit an acoustic beam, so that the beam rotationally scans the medium as the sector controller rotationally varies the position of the row arrangement.
Abstract:
A sonar system using closely spaced or interleaved projector and receiving transducer elements with a power inductor connected in series with the projector array transmits three separate frequencies and utilizes a resonant circuit connected across the projector array, and a switch alternately connecting the array to the transmitter or the resonant circuit. The resonant circuit has two parallel branches with an inductor in one branch and an inductor, a capacitor and a resistor in the parallel branch. An alternate embodiment includes a variable capacitor in series with the parallel circuit to simplify the tuning for individual installations. Values of the components were chosen to provide impedances looking into the resonant circuit which tend to maximize the "stiffness" of the projector elements for all the received frequencies, thus inhibiting the tendency of the projector elements to receive and reradiate echo signals during the receiving cycle of the sonar system.
Abstract:
A phased ultrasonic transducer and method for transmitting sound or ultrasound through a gaseous medium into a solid spectrum with ultrasound beam steering and focusing.
Abstract:
An intraluminal imaging device is provided that includes a flexible elongate member (115) configured for positioning within a body lumen of a patient, a support member (300) coupled to the flexible elongate member, and an imaging assembly (110) coupled to the support member. The support member can include a proximal section (310) configured to interface with a distal portion of the flexible elongate member and a distal section (320) configured to interface with a proximal end of the imaging assembly, wherein the proximal section has a first diameter and the distal section has a second diameter less than the first diameter.
Abstract:
An ultrasonic transducer is described that includes a stack of at least two membranes attached to a substrate. An electric circuit is coupled to the electrodes with a controller configured to apply a first electric signal to a first electrode on the first membrane, and a different, second electric signal to a second electrode on the second membrane. The first and second electric signals are configured to apply a varying voltage between the first electrode and the second electrode during a respective vibration cycle of the membranes. The first electrode on the first membrane is configured to interact with the second electrode on the second membrane by a varying electrostatic force during the respective vibration cycle depending on the varying voltage.
Abstract:
An ultrasound unit includes a plurality of elements each including N cells, in each of which a bottom electrode and a top electrode that constitutes a membrane are arranged facing each other with a cavity therebetween, wherein the element has N1 first cells and N2 (where N1≠N2, N1+N2=N) second cells having higher reception sensitivity and lower transmission sensitivity than the first cells.
Abstract:
An ultrasonic measurement apparatus has an ultrasonic transducer device including an ultrasonic element array, a first through n-th first end-side terminal XA1 to XAn provided to a first end side, and a first through n-th second end-side terminal XB1 to XBn provided to a second end side opposing the first end side; a first transmission circuit outputting first drive signals VTA1 to VTAn to the first through n-th first end-side terminals XA1 to XAn; and a second transmission circuit outputting second drive signals VTB1 to VTBn to the first through n-th second end-side terminals XB1 to XBn.