Abstract:
A method and system for generating arbitrary ultrasonic waveforms using a tri-state transmitter. Three variants of the device are described to provide functionality in three usage scenarios.
Abstract:
An ultrasonic measurement device 100 includes a pulse signal output circuit 110 that outputs a pulse signal having a rectangular wave based on a clock signal, and a resonance circuit 120 that is connected to an output node of the pulse signal output circuit 110, includes an ultrasonic transducer element, and has frequency characteristics of a low-pass filter. Also, the pulse signal output circuit 110 outputs a plurality of pulse signals that are different from each other in at least one of pulse signal voltage, pulse signal width, and pulse output timing.
Abstract:
An ultrasound imaging system, a method for ultrasound imaging and a non-transitory computer readable medium that stores instructions executable by one or more processors to perform the method for ultrasound imaging are presented. The method includes convolving one or more base ultrasound pulses corresponding to a particular frequency with a desired code to generate an extended excitation wave. Further, the extended excitation wave is transmitted to a broadband ultrasound transducer to be transmitted towards the target. Subsequently, echo signals reflected back from the target in response to the extended excitation wave are received and de-convolved. One or more ultrasound images of the target corresponding to multiple frequencies are generated based on the de-convolved echo signals.
Abstract:
A body-cavity-insertion-type probe wherein an electronic circuit board is provided via a relay board on a back surface side of an oscillator unit. A backing member is joined to a center region of a back surface of the electronic circuit board. A wiring sheet is joined to a peripheral region of the back surface. A rear wing and a front wing of the wiring sheet surround a backing case, and a right wing and a left wing of an exhaust heat sheet protrude outward via two slits formed in a heat dissipation shell and are fixed on an outer surface of the heat dissipation shell. Heat generated by the electronic circuit board is transmitted to the heat dissipation shell via the exhaust heat sheet or the backing case, and heat is dissipated by the heat dissipation shell as a whole.
Abstract:
A body-cavity-insertion-type probe wherein an internal unit (internal assembly) has an oscillator unit, a relay board, and electronic circuit board, and a backing member. The backing member is retained in a state of being housed inside a backing case, and the backing case is retained by two recesses formed in an inside surface of a heat dissipation shell as a probe head case. An exhaust heat sheet is joined to a peripheral region of a back surface of the electronic circuit board. A rear wing and a front wing of the exhaust heat sheet are joined to the backing case.
Abstract:
An ultrasonic transducer and a method of manufacturing the same are disclosed. The ultrasonic transducer includes a first electrode layer which is disposed to cover a conductive substrate and an inner wall and a top of a via hole penetrating a membrane and has a top surface at a same height as a top surface of the membrane; a second electrode layer which is disposed on a bottom surface of the conductive substrate to be spaced apart from the first electrode layer; and a top electrode which is disposed on the top surface of the membrane and which contacts the top surface of the first electrode layer.
Abstract:
An ultrasonic piezoelectric transducer device includes a transducer array consisting of an array of vibrating elements, and a base to which the array of vibrating elements in the transducer array are attached. The base include integrated electrical interconnects for carrying driving signals and sensed signals between the vibrating elements and an external control circuit. The base can be an ASIC wafer that includes integrated circuitry for controlling the driving and processing the sensed signals. The interconnects and control circuits in the base fit substantially within an area below the array of multiple vibrating elements.
Abstract:
An ultrasound diagnostic method and apparatus determines a transmission condition for generating shear waves at two or more positions of an object, for each of a plurality of elements of a transducer, and generates an ultrasound signal transmitted to the object through a full aperture of the transducer, according to the transmission condition.
Abstract:
An ultrasound transducer array according to an embodiment includes a substrate, a plurality of groove-like recesses arranged at a predetermined interval on one surface of the substrate, a cell region arranged between the recesses on the one surface side of the substrate, a flexible film configured to cover the substrate and the cell region and having fragility lower than fragility of the substrate, and a dividing groove having a width smaller than a width of the recess and reaching from the other surface of the substrate to the flexible film in the recess.
Abstract:
An ultrasonic measurement apparatus has an ultrasonic transducer device including an ultrasonic element array, a first through n-th first end-side terminal XA1 to XAn provided to a first end side, and a first through n-th second end-side terminal XB1 to XBn provided to a second end side opposing the first end side; a first transmission circuit outputting first drive signals VTA1 to VTAn to the first through n-th first end-side terminals XA1 to XAn; and a second transmission circuit outputting second drive signals VTB1 to VTBn to the first through n-th second end-side terminals XB1 to XBn.