Abstract:
An ultrasonic nebulizer including a circuit unit, a nebulization module, and a frequency sweeping unit. Constant electric power in the nebulization module of the ultrasonic nebulizer is maintained by automatic compensation of electric power consumption and/or current consumption. A fixed current consumption and electric power consumption of the nebulization module of the ultrasonic nebulizer is achieved by auto compensation, thereby improving nebulization performance.
Abstract:
A generator for exciting a piezoelectric transducer, includes at least one digital processor unit. The digital processor unit is configured to operate at least in an iterative operation stage including more than two successive iterations. Each iteration includes: exciting the transducer at a plurality of frequencies in a frequency band about a set-point frequency; during transducer excitation, acquiring one or more values related to at least one electrical magnitude associated with the excitation of the transducer for a plurality of frequencies in the frequency band; and analyzing the values acquired to determine a new set-point frequency for a subsequent iteration.
Abstract:
A circuit for causing an element to produce a substantially linear response to an input signal comprising an element for providing a response, a transistor oscillator circuit for providing an electrical output signal of variable amplitude to excite the element in response to the input signal, the transistor oscillator circuit normally causing the electrical output signal to vary non-linearly with respect to the input signal, and microprocessor means for correcting the non-linear relationship between the input signal and the electrical output signal to thereby cause the electrical output signal to vary substantially linearly with respect to the input signal when the input signal is applied to the microprocessor means.
Abstract:
Noise potentials and radiation in an ultrasonic nebulizer are reduced by separating the oscillator and power supply and shielding the former, with one of the DC power lines to the oscillator passing through an aperture in the metal casing that shields the oscillator, while the other power supply line is connected to that casing. Oscillator control may be achieved by an unshielded variable resistor coupled by conductors of extended length to the oscillator by a filter circuit.
Abstract:
A method and a device for energizing piezo-electric ultra-sound transducers, wherein rectangular pulses of calibrated duration generate in an oscillation circuit of the transducer damped waves with a frequency equal to the natural frequency of the transducer and modulated at the recurrence frequency of the rectangular pulses.
Abstract:
A mist inhaler device (200) for generating a mist for inhalation by a user. The device includes a mist generator device (201) and a driver device (202). The driver device (202) is configured to drive the mist generator device (201) at an optimum frequency to maximise the efficiency of mist generation by the mist generator device (201).
Abstract:
An aerosol generating device according to an embodiment including a storage unit in which an aerosol generating material is stored, a liquid delivery element configured to absorb the aerosol generating material stored in the storage unit, an atomizer including a vibrator configured to generate ultrasonic vibration and atomize the aerosol generating material absorbed by the liquid delivery element with an aerosol, and a processor configured to control power supplied to the vibrator, wherein the processor is further configured to sense an output value in response to a pulse signal having a certain frequency and set an operating frequency for preheating based on the sensed output value.
Abstract:
An aerosol-generating device includes a battery, a controller, an atomizer, and a scaling member disposed on one end of the atomizer and including a thermoplastic elastomer (TPE), wherein the thermoplastic elastomer has a melt flow index of 1.8 g/10 min to 80.0 g/10 min.
Abstract:
The invention discloses microparticle multi-channel time-sharing separation device and method based on an arcuate interdigital transducer. An arcuate interdigitated electrode is connected to an output channel of a signal generator. The arcuate interdigitated electrode and a polydimethylsiloxane (PDMS) microfluidic channel are placed on a lithium niobate chip. The arcuate interdigitated electrode is mainly formed by an interdigitated electrode being asymmetrically bent from a straight line into an arcuate curve. Two electrode ends of the arcuate interdigitated electrodes are asymmetrically arranged with one end big and another end small. The PDMS microfluidic channel includes a main flow channel, two inlet ends, and multiple outlet ends. The main flow channel is an approximately arcuate flow channel arranged around an outer side of the arcuate interdigitated electrode. Particles are patterned in a coverage section of surface acoustic waves to complete separation of microparticles.
Abstract:
The invention provides a monolithic integrated mesh device for atomization or pumping of a fluid or liquid comprising a plurality of apertures and a piezoelectric material. The piezoelectric material is bonded to the mesh device at an atomic scale. In one embodiment the monolithic micro-fabricated device of the invention includes piezoelectric material that eliminates the need for expensive assembly process and improves reliability. This also has advantage of requiring lower operating voltage and less complicated circuitry.