Abstract:
Provided is an integrated cover plate. The integrated cover plate includes a main body and a shear thickening material layer. The main body includes a plurality of layered structures that are laminated, wherein the main body is provided with a facade formed by laminating side surfaces of the plurality of layered structures in the thickness direction, the shear thickening material layer covers at least part of the facade of the main body, and a viscosity of the shear thickening material layer increases with an increase of a shear rate and a shear stress.
Abstract:
A laminated glazed unit includes at least first and a second elementary transparent laminated panels whose edges are next to one another and whose respective glass sheets are distinct and separated from one another, wherein the glass sheets of the first panel, on the one hand, and the glass sheets of the second panel, on the other hand, are joined together in pairs by an intermediate adhesive layer which is rigidly attached to the surface of the assembly of the first and second panels and wherein, in a region in which the first and second panels are positioned next to one another, a structuring element is inserted into the interlayer adhesive layer.
Abstract:
A transparent armor construction having a laminate structure with at least two layers. The layers are constructed of two different materials selected from the group of glass, ceramic, resin, polymeric material, and plastic and in which the at least two layers include different coefficients of thermal expansion. The layers are bonded together and a planar frame having an open central section and an outer border is then bonded to the laminate structure. The material for the planar frame is selected so that it has a coefficient of thermal expansion less than the coefficient of thermal expansion of the laminate layer to which it is bonded.
Abstract:
A panel-sealing and securing system for securing a panel to a mullion coupled with weather seal pressure gaskets for sealing exterior joints under high wind velocity. The mullion is formed in one piece or in two halves of a split mullion which occurs at the joint between multiple pre-fabricated units of a unitized grid system. The mullion has a concealed front corner cavity adjacent to panel for installing the panel-sealing and securing system. For weather sealing, elastic pressure gaskets and expansion joints comprising panel gasket seals at a joint between the panel and the mullion and mullion gasket seals at a joint between the two halves of split mullion where a unitized split mullion system is used. To securing the panel to the mullion and allow for thermal expansion movement of the panel, two segments formed in one piece or in two hinge connected pieces include a gasket holder segment and a spacer plate segment. A retainer may be in the form of a screw fastener, channel or angle clamp with an aperture through which a screw fastener or snap interlocking wedge secures the gasket holder to the mullion. The retainer may be a retainer-cover of the front corner cavity combined in one element. Installation of the retainer secures the gasket holder to the mullion and applies pressure on an end of the panel gasket or the overlapping aligned ends of the panel gasket and the mullion gasket.
Abstract:
A composite article comprises a first glass layer, a silicone layer, a second glass layer, and an organic layer. The silicone layer is disposed adjacent to the first glass layer. The silicone layer includes a cured silicone composition. The second glass layer is disposed adjacent to the silicone layer, spaced from and substantially parallel to the first glass layer. The organic layer is disposed adjacent to the second glass layer, spaced from and substantially parallel to the silicone layer. The organic layer includes a cured organic composition. A method of making a composite article including a first glass layer and a polymeric layer disposed adjacent to the first glass layer includes providing a dual-compartment chamber. The chamber includes a first compartment and a second compartment separated by a polymeric separator. The separator can be manipulated through pressure differentials between the compartments. Pressure is applied to at least one of the silicone layer and the first glass layer with the polymeric separator.
Abstract:
An exemplary method for making a transparent composite includes steps of combining a refractive index modifier with a precursor solution to provide a modified polymer precursor solution, combining glass with the modified precursor solution, and curing the modified precursor solution to create a transparent glass reinforced polymer composite. An example refractive index modifier comprises a monofunctional compound or monofunctional monomer, a polyfunctional compound or polyfunctional monomer or polymer, which is combined with the polymer precursor solution to increase the crosslinking density of the chain in the cured modified polymer precursor solution, and thus increase the refractive index. An exemplary transparent composite comprises a glass reinforced thermosetting polymer composite layer sandwiched between glass layers.
Abstract:
A rear sliding window assembly suitable for use in a vehicle includes upper and lower track members and at least one fixed glass window panel. The track members are disposed at a surface of the fixed glass window panels and no portion of the track members is in contact with the opposite surface of the fixed glass window panels. A movable glass window panel is slidably disposed at the track members and movable at least partially along the track members relative to the fixed glass window panel or panels. The movable glass window panel is movable between opened and closed positions. A perimeter edge of the movable glass window panel may be received by a glide member, and the glide member may be disposed in the upper or lower track member to facilitate sliding of the movable glass window panel at least partially along the upper or lower track member.
Abstract:
A transparent laminated bulletproof and/or splinter-proof structure comprising three stacks of glass sheets (a, c; e, g, i; k) all connected together by adhesive interlayers (b, d, f, h, j), in which the first stack (a, c) is adjacent to and protrudes from the second stack (e, g, i), which is itself adjacent to and protrudes from the third stack (k), a liner (q, s, u) made of bulletproof and/or splinter-proof material is bonded to the laminated structure on the free peripheral surface of the first stack (a, c), the edge and the free peripheral surface of the second stack (e, g, i) and the edge of the third stack (k), and a transparent plastic sheet (m) is bonded to the liner (u) and to the free face of the third stack (k). A manufacturing process, the application of this laminated structure, and a glazing comprising it.
Abstract:
An exemplary method for making a transparent composite includes steps of combining a refractive index modifier with a precursor solution, combining glass with the precursor solution, and curing the precursor solution to create a transparent glass reinforced polymer composite. An exemplary transparent composite comprises a glass reinforced thermosetting polymer composite layer sandwiched between glass layers.