Abstract:
Described herein are devices, systems, and methods for managing the power consumption of an automotive vehicle, and thereby for optimizing the power consumption of the vehicle. The devices and systems for managing the power consumption of the vehicle typically include power management logic that can calculate an applied power for the vehicle engine based on information provided from the external environment of the vehicle, the operational status of the vehicle, one or more command inputs from a driver, and one or more operational parameters of the vehicle.
Abstract:
A control device of a vehicle has a hill ascent angle update determiner, a slope estimator, a deceleration determiner, and a hill ascent angle estimator. The deceleration determiner determines that a vehicle is in a deceleration state when the throttle opening is equal to or lower than a threshold. The hill ascent angle update determiner prohibits update processing of an estimated hill ascent angle in the increase direction by the hill ascent angle estimator if the slope estimator estimates that a road surface has an upward slope and the deceleration determiner determines that the vehicle is in the deceleration state.
Abstract:
A speed control system for a vehicle, comprising an electronic controller configured to automatically cause a vehicle to operate in accordance with a target speed value. The electronic controller is further configured to receive information relating to movement of at least a portion of a vehicle body or at least a portion of a body of an occupant relative to a vehicle, and to automatically adjust the value of the target speed value in dependence on the received information.
Abstract:
A vehicle speed control system for a vehicle having a plurality of wheels, the vehicle speed control system comprising one or more electronic control units configured to carry out a method that includes applying torque to at least one of the plurality of wheels, detecting a slip event between any one or more of the wheels and the ground over which the vehicle is travelling when the vehicle is in motion and providing a slip detection output signal in the event thereof. The method carried out by the one or more electronic control units further includes receiving a user input of a target speed at which the vehicle is intended to travel and maintaining the vehicle at the target speed independently of the slip detection output signal by adjusting the amount of torque applied to the at least one of the plurality of wheels.
Abstract:
A control system for a motor vehicle that operates to receive a signal indicative of a steering angle of a vehicle and cause application of negative torque to one or more wheels of a vehicle to slow a wheel. The system is configured to perform a turn-assist operation in which the system causes application of negative torque to at least a first wheel of a vehicle being an inside trailing wheel when a steering angle exceeds a predetermined steering angle thereby to promote turning of a vehicle. The amount of negative torque is arranged to increase with increasing steering angle beyond the predetermined steering angle.
Abstract:
A trailer brake control method that includes determining, based on information from a vehicle speed sensor, a current vehicle speed of a vehicle; and regardless of the current vehicle speed, determining, using a processing unit, a minimum trailer brake control value (MTBCV) based on the equation MTBCV=R1−Cth root(the current vehicle speed)/R2, wherein the minimum trailer brake control value corresponds to a minimum braking force at the current vehicle speed, R1 is a real number less than 1.0, C is an integer greater than 2, and R2 is a real number greater than 1.0. The method also includes determining, using the processing unit, a trailer brake command signal based on the minimum trailer brake control value; and operating brakes of a trailer connected to the vehicle at or above the minimum braking force by transmitting the trailer brake command signal from the vehicle to a trailer.
Abstract:
A control device of a vehicle has a hill ascent angle update determiner, a slope estimator, a deceleration determiner, and a hill ascent angle estimator. The deceleration determiner determines that a vehicle is in a deceleration state when the throttle opening is equal to or lower than a threshold. The hill ascent angle update determiner prohibits update processing of an estimated hill ascent angle in the increase direction by the hill ascent angle estimator if the slope estimator estimates that a road surface has an upward slope and the deceleration determiner determines that the vehicle is in the deceleration state.
Abstract:
A method for operating a speed control system of a vehicle having a plurality of wheels is provided. The method comprises receiving one or more electrical signals representative of vehicle-related information. The method further comprises determining, based on the one or more electrical signals representative of vehicle-related information, that one or more of the wheels of the vehicle have overcome an obstacle or are about to overcome an obstacle and that therefore a reduction in an applied drive torque to one or more of the wheels of the vehicle by a powertrain subsystem (applied drive torque) will be required to maintain the speed of the vehicle at a target set-speed of the speed control system. The method still further comprises automatically commanding the application of a retarding torque to one or more of the wheels of the vehicle to counteract the effect of an overrun condition in the powertrain subsystem from increasing the speed of the vehicle. A system for controlling the speed of a vehicle comprising an electronic control unit configured to perform the above-described methodology is also provided.
Abstract:
A method for operating an off-road speed control system of a vehicle is provided. The method comprises identifying a pattern or change in at least one component of vehicle drag. The method further comprises monitoring vehicle speed to predict where a change in the at least one component of vehicle drag may result in a speed overshoot event or a speed undershoot event. The method still further comprises, in response to the predicted speed overshoot event or speed undershoot event, automatically commanding the application of an appropriate opposing torque to one or more wheels of the vehicle to counteract the predicted speed overshoot or undershoot. An off-road speed control system for a vehicle comprising an electronic control unit (ECU) configured to perform the above-described methodology is also provided.
Abstract:
Described herein are devices, systems, and methods for managing the power consumption of an automotive vehicle, and thereby for optimizing the power consumption of the vehicle. The devices and systems for managing the power consumption of the vehicle typically include power management logic that can calculate an applied power for the vehicle engine based on information provided from the external environment of the vehicle, the operational status of the vehicle, one or more command inputs from a driver, and one or more operational parameters of the vehicle.