Abstract:
The present invention includes compositions, methods, systems of making a composition that includes one or more active agent; a recognitive polymeric matrix; and a porosigen, wherein the composition comprises a porous recognitive, swellable hydrogel that dissociates under conditions of low water or humidity.
Abstract:
The present invention provides for concentrated aqueous silk fibroin solutions and an all-aqueous mode for preparation of concentrated aqueous fibroin solutions that avoids the use of organic solvents, direct additives, or harsh chemicals. The invention further provides for the use of these solutions in production of materials, e.g., fibers, films, foams, meshes, scaffolds and hydrogels.
Abstract:
The present invention concerns methods of treating systemic, regional, or local inflammation from a patient suffering or at risk of inflammation comprising administration of a therapeutically effective dose of a sorbent that sorbs an inflammatory mediator in said patient. In some preferred embodiments, the sorbent is a biocompatible organic polymer.
Abstract:
Pellets or granules comprise polymeric material, for example polyetheretherketone and a fugitive material, for example sodium chloride. The granules may be used in injection moulding to produce shapes for use in medical implants and may conveniently be used to form parts which are partially porous, or to prepare porous films.
Abstract:
The present invention relates to a method of preparing porous solids, which method comprises polymerizing, in a salt melt or a eutectic mixture of salt melt containing at least one Lewis acidic salt, cyano monomers having at least one or at least two cyano groups in their molecule, wherein the at least one or at least two cyano groups are bonded to a rigid linking group in the cyano monomer, as well as to the porous solids obtainable by that method. Owing to their porosity and the associated extremely high specific surface area, the porous solids are useful as sorbents, filtering and insulating materials, as well as catalyst carriers.
Abstract:
A porous polymeric matrix containing at least one natural polymer and at least one synthetic polymer and optionally at least one cation. Furthermore, a method of making a porous polymeric matrix involving mixing at least one natural polymer and inorganic salts with a solution comprising at least one solvent and at least one synthetic polymer to form a slurry, casting the slurry in a mold and removing the solvent to form solid matrices, immersing the solid matrices in deionized water to allow natural polymer cross-linking and pore creation to occur simultaneously, and drying the matrices to create a porous polymeric matrix; wherein the matrix contains a cation. Also, a method of making a porous polymeric matrix, involving mixing at least one natural polymer in an aqueous solvent and mixing at least one synthetic polymer in an organic solvent, combining the mixtures and casting in a mold, and separately removing said aqueous solvent and said organic solvent to form a porous polymeric matrix; wherein the porous polymeric matrix does not contain a cation.
Abstract:
Methods for making foamed elastomer gels are disclosed. Chemical foaming agents may be incorporated or gas may be injected into a molten gel and then using heating and cooling techniques and/or additives, gas bubbles are formed and preserved in the cooled and solidified elastomer gel.
Abstract:
Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.
Abstract:
Biocompatible polyhydroxyalkanoate compositions with controlled degradation rates have been developed. In one embodiment, the polyhydroxyalkanoates contain additives to alter the degradation rates. In another embodiment, the polyhydroxyalkanoates are formed of mixtures of monomers or include pendant groups or modifications in their backbones to alter their degradation rates. In still another embodiment, the polyhydroxyalkanoates are chemically modified. Methods for manufacturing the devices which increase porosity or exposed surface area can be used to alter degradability. For example, as demonstrated by the examples, porous polyhydroxyalkanoates can be made using methods that creates pores, voids, or interstitial spacing, such as an emulsion or spray drying technique, or which incorporate leachable or lyophilizable particles within the polymer. Examples describe poly(4HB) compositions including foams, coatings, meshes, and microparticles. As demonstrated by the examples, these polyhydroxyalkanoate compositions have extremely favorable mechanical properties, as well as are biocompatible and degrade within desirable time frames under physioogical conditions. These polyhydroxyalkanoate materials provide a wider range of polyhydroxyalkanoate degradation rates than are currently available. Methods for processing these materials, particularly for therapeutic, prophylactic or diagnostic applications, or into devices which can be implanted or injected, are also described.