Abstract:
Microporous material comprising water insoluble thermoplastic organic polymer and particulate amorphous precipitated silica not only exhibits low particulate emissions during handling and use, but also has a low extactable alkali metal content. Microporous material having these characteristics is especially useful in clean rooms where electronic devices such as integrated circuits are manufactured. Such microporous material may be produced by employing amorphous precipitated silica particles having low alkali metal content as all or a substantial proportion of the amorphous precipitated silica particles constituting the microporous material.
Abstract:
This invention relates to highly porous, crosslinked bodies derived from nitrogen-containing polymers, and a process of producing the porous bodies which comprises dissolving a nitrogen-containing polymer to form a gel, ionically crosslinking the gel, and covalently further crosslinking the ionically crosslinked gel body.
Abstract:
A process is provided which allows economical production of polyolefin separation membranes having various structures, porosities and pore sizes. The process involves using a melt blend solution consisting of a polyolefin such as polypropylene or polyethylene and a diluent selected from the group consisting of natural soybean oil, pure linoleic acid, or a mixtures of oleic acid, linoleic acid and palmitic acid.
Abstract:
An active agent delivery device comprises (a) microporous material comprising a matrix consisting essentially of linear ultrahigh molecular weight polyolefin, a large proportion of finely divided water-insoluble filler of which at least about 50 percent by weight is siliceous, and interconnecting pores; and (b) a releasable active agent or precursor thereof associated with at least a portion of the filler.
Abstract:
A porous membrane comprising a polyvinylidene fluoride resin and having a uniform, three-dimensional, network pore structure. The membrane has excellent chemical resistance, excellent filtering characteristics and excellent mechanical properties. The porous membrane can be produced by blending a polyvinylidene fluoride resin, an organic liquid and a powdery hydrophobic silica, subjecting the resultant blend to melt-molding to form a membrane, and extracting the organic liquid and the hydrophobic silica from the melt-molded membrane.
Abstract:
A single-phase composite structure of filamentary and non-filamentary semicrystalline morphology made from the same polymer, which is of a type capable of gelling in a suitable solvent and of being deformed into a high-modulus, high-strength product. Layers of the polymer in sheet form are interleaved with at least one layer, also of that polymer, made from filaments thereof. The method of making the product may involve heating a sheet of UHMWPE or other polymer gel (5% UHMWPE in 95% paraffin oil, by weight) to 125.degree. C., applying a knitted UHMWPE high modulus, high-strength structure on one side thereof, extracting the non-volatile paraffin oil therefrom with hexane, and evaporating the hexane.
Abstract:
A method of making a microporous material is provided which comprises the steps of melt blending crystallizable thermoplastic polymer with a compound which is miscible with the thermoplastic polymer at the melting temperature of the polymer but phase separates on cooling at or below the crystallization temperature of the polymer, forming a shaped article of the melt blend, cooling the shaped article to a temperature at which the polymer crystallizes to cause phase separation to occur between the thermoplastic polymer and the compound to provide an article comprising a first phase comprising particles of crystallized thermoplastic polymer in a second phase of said compound, orienting the article in at least one direction to provide a network of interconnected micropores throughout. The microporous article comprises about 30 to 80 parts by weight crystallizable thermoplastic polymer and about 70 to 20 parts by weight of the compound. The oriented article has a microporous structure characterized by a multiplicity of spaced randomly dispersed, equiaxed, non-uniform shaped particles of the thermoplastic polymer which are coated with the compound. Adjacent thermoplastic particles within the article are connected to each other by a plurality of fibrils consisting of the thermoplastic polymer. The fibrils radiate in three dimensions from each particle. The compound may be removed from the sheet article. e.g., by solvent extraction. The preferred article is a sheet material.
Abstract:
Novel microporous polymers in forms ranging from films to blocks and intricate shapes from synthetic thermoplastic polymers, such as, olefinic, condensation, and oxidation polymers, are disclosed. In one embodiment the microporous polymers are characterized by a relatively homogeneous, three-dimensional cellular structure having cells connected by pores of smaller dimension. Also disclosed are microporous polymer products which contain relatively large amounts of functionally useful liquids and behave as solids.
Abstract:
The starting materials for the practice of the present invention are (1) one or more organic monomers or oligomers which upon irradiation very rapidly undergo a polymerization reaction to form a solid polymer; and (2) a liquid vehicle in which the one or more organic monomers or oligomers are soluble but in which the polymer formed is insoluble. For the manufacture of microporous membrane in accordance with the invention the monomers or oligomers are dissolved in the liquid vehicle, the resulting solution is formed into a thin layer, and the thin layer of the solution is then irradiated as with ultraviolet or electron beam radiation whereupon the rapid polymerization reaction immediately ensues and the polymer formed immediately segregates from the vehicle thereby resulting in microporous membrane from which the vehicle can be removed as by evaporation or washing. Because the radiation-induced polymerization reaction and the segregation of the polymer formed are so rapid, the membrane formed has cells and communications therebetween of very small dimensions thereby providing the microporous structure. Where ultraviolet radiation is used the solution also includes a photoinitiator.
Abstract:
A microporous film which comprises a matrix comprising 40 to 90 volume percent of a polyolefin having a number average molecular weight of 15,000 or more and 10 to 60 volume percent of an inorganic filler, said matrix having therein void spaces at a rate of 30 to 75 volume percent based on the volume of the film; and 2 to 20 weight percent, based on the total weight of the polyolefin and the inorganic filler, of an organic substance which is substantially insoluble in and inert to sulfuric acid and has a solubility parameter ranging from 7.3 inclusive to 8.4 exclusive; said organic substance, in its majority, adhering to the overall surface of the film including the outer surfaces of the film and the surfaces of the polyolefin walls defining said void spaces in cooperation with said inorganic filler.