Abstract:
A fluid pump is provided that produces an outflow of fluid that is not proportional to the speed of the input drive. Thus, the fluid pump can be tuned to provide a substantially constant outflow of fluid irrespective of the speed of the input drive. The fluid pump also provides fluid outflow when the rotational direction of the input drive is reversed.
Abstract:
A fluid pump is provided that produces an outflow of fluid that is not proportional to the speed of the input drive. Thus, the fluid pump can be tuned to provide a substantially constant outflow of fluid irrespective of the speed of the input drive. The fluid pump also provides fluid outflow when the rotational direction of the input drive is reversed.
Abstract:
The speed of a pump motor in a vehicle brake control system is controlled by comparing an actual pump motor speed to a threshold speed. The actual pump motor speed is determined by measuring the pump back emf while the motor is de-energized. If the actual pump motor speed is greater than the threshold speed, the motor remains de-energized. If the actual pump motor speed is less than the threshold speed, the pump motor is energized with a pulse width modulated voltage having a variable duty cycle and a variable frequency which are functions of the difference between the actual pump motor speed and the threshold speed.
Abstract:
The present invention is an electric hydraulic hybrid motor which can be made smaller in size and can provide excellent performance. To this end, a hydraulic pump (20) and a hydraulic motor (60) are respectively placed inwardly of the stator (12) of an electric motor (10) and the rotor (14) of the electric motor (10), and the hydraulic pump (20) includes a cylinder block (21) for the pump and a plunger (23) for the pump which are adapted to rotate together with the rotor (14), and the hydraulic motor (60) includes a cylinder block (61) for the motor and a plunger (23a) for the motor.
Abstract:
A system for detecting leaks in a hydraulic system. The system shuts down the hydraulic system if a leak is detected and notifies individuals in the area that a leak has occurred. The leak detection system has sensors for measuring hydraulic system parameters and a computer for detecting abnormalities in the system based on values returned by the sensors. Sensors used in the example leak detection system include an RPM pickup, a pressure transducer, a flow meter and an hydraulic fluid level and temperature switch. Outputs of the sensors are analyzed by the computer to determine if the hydraulic system has a leak. If a leak is detected, the computer sends response signals to a device for engaging or disengaging the prime mover from the hydraulic pump and to another device for actuating a valve to stop hydraulic fluid flow from the reservoir. The computer may also send indicator signals to a display console for activating a warning light, a buzzer or a display.
Abstract:
An apparatus controls a pressure in a cylinder chamber of a hydraulic pump-motor. The cylinder chamber is formed by fitting a piston in a cylinder bore of a rotatable cylinder block, and the cylinder block is rotated so that ports going to the cylinder chambers are alternatively opened to a high pressure port and a lower pressure port that are both formed in a valve plate. The apparatus includes a first switching port formed at a top dead point side of the valve plate, the first switching port being communicated with a tank through a first open-close valve. A second switching port is formed at a bottom dead point of the valve plate, the second switching port being communicated with the high pressure port through a second open-close valve. A rotational speed detector detects a rotational speed of the cylinder block, a pressure detector detects a maximum pressure in the cylinder chamber and a control device controls opening and closing timings and opening magnitude of the first and second open-close valves in response to the rotational speed and the maximum pressure.
Abstract:
After the pumping station set points for a desired pipeline operation are calculated, they are used by process controllers at the individual pumping stations to control operations at the station. Measured values of the station's performance are compared with the set points. If these values differ enough as to require a change in the speed of the compressors, the speed of the compressors then operating is then slowly changed (or ramped) so as to bring the pipeline into operation at the set points that were calculated. Ramping is performed so that the operating efficiency of the compressors is always maintained at approximately a predetermined level. If it is found that a change is required in the number of compressors being used, this is brought to the attention of the operator of the pipeline who must then decide to let the controller effect the change. At frequent intervals, each compressor is checked for surge and stonewall conditions. In the event a surge condition is detected, the compressor's bypass valve is opened and the compressor is idled. After a suitable time delay, a test is made to determine if there is any speed at which the compressor can be operated for existing flow and compression ratios which will be on the compressor efficiency curve then being used. If so, the compressor is then loaded back on-line and ramped to the correct speed. If not, the operator is requested to permit operation of the compressor at a different efficiency level. If stonewall is present, it is necessary to put additional compressor units on line.
Abstract:
Non-limiting exemplary embodiments of a pumping system and methods for operating the pumping system in a region of high pressure or a region of high flow are disclosed. The pumping system includes a piston disposed within a piston cylinder, a drive shaft, an eccentric coupled to the drive shaft, a connecting arm having opposing first and second ends, and a controller for controlling the rotation of the drive shaft such that the piston oscillates within a region of high pressure or a region of high flow.
Abstract:
A sensor system for determining a condition associated with a piston rod of a reciprocating system includes an interrogator system having a first antenna. The sensor system further includes a second antenna separated from the first antenna by an air gap distance. The second antenna is configured to be coupled to the piston rod of the reciprocating system. The second antenna is a patch antenna and is configured to communicate with the first antenna through a range of translational movement relative to the first antenna. The sensor system further includes a radio frequency sensor coupled to the second antenna. The radio frequency sensor is configured to be coupled to the piston rod of the reciprocating system, measure a characteristic associated with the piston rod of the reciprocating system, and transmit data associated with the characteristic to the first antenna of the interrogator system through the second antenna.
Abstract:
The presence or absence of boost pressure is determined from an error between F-P characteristics showing the relationship between the output frequency of an inverter and the power consumption and an actual operating point. When there is boost pressure, an amount of correction of linearized characteristics showing the relationship between quantity and discharge side pressure is automatically calculated based on the error, and the linearized characteristics are corrected. Subsequently, by carrying out a PID control in accordance with a target pressure obtained from post-correction linearized characteristics, the output frequency of an inverter unit is controlled, and an estimated constant end pressure control is carried out. Because of this, a pressure sensor or quantity sensor on a pump intake side is rendered unnecessary, and a simplification and reduction in cost of a feed water pump control device are possible.