Abstract:
A method for controlling an NOx concentration in an exhaust gas in a combustion facility by: measuring a reaction velocity ki of each of a plurality of chars, each corresponding to a plurality of types of pulverized coals; determining a relationship between the NOx concentration in the exhaust gas and the reaction velocity ki for each of the chars; (iii) blending the plurality of the types of the pulverized coal, wherein a blending ratio of the plurality of the types of the pulverized coal is determined by using, as an index, a reaction velocity kblend of the char of the blended pulverized coal, which corresponds to a target NOx concentration or below, on the basis of the relationship; and supplying the blended pulverized coal to the combustion facility as the fuel of the combustion facility.
Abstract:
Mineral additives and a method for operating a waste-to-energy furnace are provided in order to improve its operational performance and availability, increase the lifetime of the combustor building materials (refractory walls and heat-exchanger metallic tubes) and flue gas treatment equipment, improve ash quality, reduce emissions and avoid combustion problems such as agglomeration, slagging, deposition, and corrosion. A method for operating a waste-to-energy furnace, such as a fluidized bed reactor, pulverized-fuel combustor, grate combustor includes introducing mineral additive into the furnace. The method further includes heating at least a portion of the mineral additive either intimately in contact with the fuel, such that the ability of mineral additive to induce crystallization of the surface of forming ashes is enhanced, or minimizing the contact of the mineral additive with the fuel and the forming ashes, such that the solid-gas reactions between the mineral additive and the volatile compounds in the flue gas are favored and the mineral additive power to capture at least a portion of the inorganic volatile compounds present in the furnace is enhanced.
Abstract:
A method and apparatus for automatically sorting and blending coal and other fuel stocks through a computer-controlled process in order to achieve a specified blend of materials. By sorting fuel stocks with different characteristics into different stacking points, an operator can then automatically combine and uniformly blend these sorted fuel stocks to create a variety of blended materials with different properties tailored to the specific needs of the operator or end user. The computer-controlled nature of the process allows for precise blending in an automated and more efficient and reproducible fashion.
Abstract:
A method of generating heat in a boiler such as by combusting a fuel material which includes a plurality of densified fuel pellets is provided. The densified fuel pellets may be formed by a process which includes compacting a mixture which includes about 5 to 15 wt. % molten thermoplastic polymeric material and at least about 75 wt. % cellulosic material. Many embodiments of the method are suitable for use in a coal-fired furnace and/or in other industrial boiler applications.
Abstract:
Methods and systems are disclosed for direct conversion of a used or waste material into a burnable fuel and to burnable fuels derived therefrom.
Abstract:
A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.
Abstract:
Methods and systems are disclosed for direct conversion of a used or waste material into a burnable fuel and to burnable fuels derived therefrom.
Abstract:
A fossil-fuel-fired system, which includes an emissions-control-agent dispenser, a furnace, an emissions monitor and, optionally, a controller, is disclosed. The emissions-control-agent dispenser provides a prescribed amount of organic-emissions-control agent, such as, for example, an opacity-control agent to the fossil-fuel-fired system. The furnace includes an exhaust communicating with the atmosphere. The emissions monitor is capable of measuring at least one property of the flue-gas communicated through the exhaust to the atmosphere. For example, when an organic-emissions-control agent is an opacity-control agent, the emissions monitor has the capability of at least measuring opacity. When included, the controller communicates with at least the emissions-control-agent dispenser and the emissions monitor.
Abstract:
A biomass-based fuel pellet, such as a fuel pellet which includes thermoplastic polymeric material and a substantial amount of cellulosic material, e.g. cellulosic material derived from biomass source(s), is provided. The fuel pellet commonly includes about 5 to 15 wt. % of the thermoplastic polymeric material and at least about 75 wt. % cellulosic material. Optionally, the fuel pellet may comprise a lignin additive. Many embodiments of the fuel pellets are suitable for use in a coal-fired furnace and/or in other industrial boiler applications.
Abstract:
With the system of the present invention, high sulfur content coalnulla mixture of coal, sulfur compounds and ash (e.g., stone and slate)nullis crushed, and a proportion of the higher density sulfur compounds and ash are separated from the lower density coal. The result of the separation process, the continuous supply of the separated coal mixture, is then continuously monitored for sulfur content. The system uses electronic controls to vary the proportion of sulfur compounds and ash which are separated out and removed from the coal mixture so as to maximize the economics of reducing the sulfur content, and of generating power. A centrifugal separator is used for continuously separating the relatively dense high sulfur content coal and ash from the coal mixture. This separator preferably has a substantially rotationally symmetric drum element which rotates about a horizontal central axis. The proportion of sulfur compounds and ash which are removed is controllable by controlling the particle size of the crushed coal mixture, controlling the speed of the separator and controlling the separator openings which allows the high-density material to emerge.