Abstract:
A display panel having a display region and a non-display region surrounding the display region is provided. The display panel includes a first substrate, a second substrate, a sealant located in the non-display region, and a display medium. The first substrate includes a plurality of scan lines and data lines, a plurality of active devices, a plurality of pixel electrodes, and a common electrode located in the display region. The active devices are electrically connected to the scan lines and the data lines. The pixel electrodes are electrically connected to the active devices. The common electrode is disposed corresponding to the pixel electrodes. The first substrate further includes a shielding electrode located in the non-display region and is electrically connected to the common electrode. The shielding electrode is located between the sealant and the common electrode and surrounds the display region.
Abstract:
The present invention relates to an organic-inorganic hybrid thin film and a method for preparing the same and more specifically to an organic-inorganic hybrid thin film including a stable new functional group and a method for preparing the organic-inorganic hybrid thin film that is formed by the molecular layer deposition method alternately using inorganic precursor and organic precursor.
Abstract:
A gas-barrier laminate (10) of a structure in which a first inorganic barrier layer (3), a water-trapping layer (5) and a second inorganic barrier layer (9) are provided in this order on a plastic base material (1), wherein the water-trapping layer (5) is a layer in which a granular moisture-absorbing agent is dispersed in a matrix of an ionic polymer, the granular moisture-absorbing agent being capable of absorbing moisture to a degree lower than that attained by the matrix, and an organic layer (7) is provided between the water-trapping layer (5) and the second inorganic barrier layer (9), the organic layer (7) serving as an underlying layer for forming the second inorganic barrier layer. The water-trapping layer has excellent barrier property against water and is, at the same time, effectively suppressed from swelling despite it has absorbed moisture. The water-trapping layer is, further, effectively suppressed from losing its activity.
Abstract:
A display device includes a first supporting member disposed in the first pad area of the first base substrate and spaced apart from the sealing member to define a predetermined space. A second supporting member is filled in the predetermined space by filling and curing liquid material. This protects the display panel from harsh ambience, such as light, heat and moistures, reducing the sealing and black matrix area. Such improvement can decrease the bezel size, effectively increasing viewable area of the display, which becomes more important in the mobile device.
Abstract:
The present invention provides an active matrix substrate including a thin film transistor that sufficiently achieves high reliability and a low capacitance, a production method for the active matrix substrate without an increase in the number of photomasks, a display device including the active matrix substrate, and a production method for the display device. The active matrix substrate of the present invention includes a thin film transistor that includes a semiconductor layer consisting of an oxide semiconductor. The active matrix substrate includes at least the semiconductor layer consisting of the oxide semiconductor, an etching stopper layer, and an interlayer insulating film formed from a spin-on-glass material. In the plan view of the principal surface of the substrate, the etching stopper layer covers at least part of the semiconductor layer, and the interlayer insulating film covers at least part of the etching stopper layer.
Abstract:
A reflection-type optical control element has an optical control layer whose state is reversibly changed between a transparent state caused by hydrogenation and a reflective state caused by dehydrogenation, a catalyst layer that accelerates the hydrogenation and the dehydrogenation in the optical control layer, and an oxidation inhibition member that is arranged between the optical control layer and the catalyst layer and inhibits oxidation of the optical control layer that is caused by oxygen that permeates through the catalyst layer.
Abstract:
Optical shutter (50), e.g. fort-stereoscopic shutter glasses, is disclosed. The optical shutter includes a light source, e.g. LCD, CRT or plasma display, that emits polarized light (12) that has a first polarization state, a first polymeric substrate (100) that receives the polarized light and transmits the polarized light without substantially changing the first polarization state of the polarized light, a second polymeric substrate (107) that faces the first polymeric substrate, and an optical stack (60) that is disposed between the first and second polymeric substrates. The optical stack includes first and second electrically conductive layers (101, 102), first and second oriented chromonics alignment layer (103, 106), and an oriented liquid crystal layer (105).
Abstract:
Provided is a liquid crystal display including: a first substrate; a thin film transistor disposed on the first substrate; a passivation layer disposed on the thin film transistor and comprising a contact hole exposing an electrode of the thin film transistor; a pixel electrode disposed on the passivation layer and connected to the electrode of the thin film transistor through the contact hole; a lower buffer layer disposed on the pixel electrode; a lower alignment layer disposed on the lower buffer layer; a second substrate facing the first substrate; a common electrode disposed on the second substrate; an upper buffer layer disposed on the common electrode; and an upper alignment layer disposed on the upper buffer layer, in which the lower buffer layer comprises parylene, the upper buffer layer comprises parylene, or both the lower and the upper buffer layers comprise parylene.
Abstract:
A thin film transistor includes a gate electrode, a first insulating layer on the gate electrode, a semiconductor layer on the gate electrode and separated from the gate electrode by the first insulating layer, the semiconductor layer including a channel region corresponding to the gate electrode, a source region, and a drain region, a hydrogen diffusion barrier layer on the semiconductor layer, the hydrogen diffusion barrier layer covering the channel region and exposing the source and drain regions, and a second insulation layer on the source and drain regions and on the hydrogen diffusion barrier layer, such that the hydrogen diffusion barrier layer is between the second insulation layer and the channel region.
Abstract:
Provided is a liquid crystal display including: a first substrate; a thin film transistor disposed on the first substrate; a passivation layer disposed on the thin film transistor and comprising a contact hole exposing an electrode of the thin film transistor; a pixel electrode disposed on the passivation layer and connected to the electrode of the thin film transistor through the contact hole; a lower buffer layer disposed on the pixel electrode; a lower alignment layer disposed on the lower buffer layer; a second substrate facing the first substrate; a common electrode disposed on the second substrate; an upper buffer layer disposed on the common electrode; and an upper alignment layer disposed on the upper buffer layer, in which the lower buffer layer comprises parylene, the upper buffer layer comprises parylene, or both the lower and the upper buffer layers comprise parylene.