Abstract:
Provided is an excellent robot device capable of preferably detecting difference between dirt and a scratch on a lens of a camera and difference between dirt and a scratch on a hand.A robot device 100 detects a site in which there is the dirt or the scratch using an image of the hand taken by a camera 305 as a reference image. Further, this determines whether the detected dirt or scratch is due to the lens of the camera 305 or the hand by moving the hand. The robot device 100 performs cleaning work assuming that the dirt is detected, and then this detects the difference between the dirt and the scratch depending on whether the dirt is removed.
Abstract:
An example method for detecting a movable element on a surface involves receiving, from a depth sensor coupled to a mobile robot, a first depth measurement between the depth sensor and a ground surface. The method also involves causing at least one transducer coupled to the mobile robot to emit a directional pressure wave toward the ground surface. The method further involves receiving, from the depth sensor coupled to the mobile robot, a second depth measurement between the depth sensor and the ground surface after emitting the directional pressure wave. Additionally, the method involves identifying one or more differences between the first depth measurement and the second depth measurement indicating that the ground surface includes a movable element. Further, the method involves providing navigation instructions to the mobile robot based on the identified one or more differences between the first depth measurement and the second depth measurement.
Abstract:
A mobile apparatus and a localization method thereof which perform localization of the mobile apparatus using a distributed filter system including a plurality of local filters independently operated and one fusion filter integrating results of localization performed through the respective local filters, and additionally apply accurate topological absolute position information to the distributed filter system to improve localization performance (accuracy, convergence and speed in localization, etc.) of the mobile apparatus on a wide space. The mobile apparatus includes at least one sensor, at least one first distribution filter generating current relative position information using a value detected by the at least one sensor, at least one second distribution filter generating current absolute position information using the value detected by the at least one sensor, and a fusion filter integrating the relative position information and the absolute position information to perform localization.
Abstract:
A control system may receive a first plurality of measurements indicative of respective joint angles corresponding to a plurality of sensors connected to a robot. The robot may include a body and a plurality of jointed limbs connected to the body associated with respective properties. The control system may also receive a body orientation measurement indicative of an orientation of the body of the robot. The control system may further determine a relationship between the first plurality of measurements and the body orientation measurement based on the properties associated with the jointed limbs of the robot. Additionally, the control system may estimate an aggregate orientation of the robot based on the first plurality of measurements, the body orientation measurement, and the determined relationship. Further, the control system may provide instructions to control at least one jointed limb of the robot based on the estimated aggregate orientation of the robot.
Abstract:
A robot control system detects a position and a direction of each user by a plurality of range image sensors provided in an exhibition hall. A central controller records an inspection action after a user attends the exhibition hall until the user leaves to generate an inspection action table. When the user attends again, the central controller reads a history of inspection action from the inspection action table. Then, the central controller chooses from an utterance content table an utterance content containing a phrase that mentions the inspection action included in the history at a time of last time attendance, determines the utterance content, and makes a robot output the determined utterance content to the user.
Abstract:
An example implementation for determining mechanically-timed footsteps may involve a robot having a first foot in contact with a ground surface and a second foot not in contact with the ground surface. The robot may determine a position of its center of mass and center of mass velocity, and based on these, determine a capture point for the robot. The robot may also determine a threshold position for the capture point, where the threshold position is based on a target trajectory for the capture point after the second foot contacts the ground surface. The robot may determine that the capture point has reached this threshold position and based on this determination, cause the second foot to contact the ground surface.
Abstract:
A suitable waypoint is selected using a goal score, a section from a start point to a goal point through the waypoint is divided into a plurality of sections based on the waypoint with a solution of inverse kinematics, and trees are simultaneously expanded in the sections using a Best First Search & Rapidly Random Tree (BF-RRT) algorithm so as to generate a path. By this configuration, a probability of local minima occurring is decreased compared with the case where the waypoint is randomly selected. In addition, since the trees are simultaneously expanded in the sections each having the waypoint with a solution of inverse kinematics, the solution may be rapidly obtained. A time consumed to search for an optimal motion path may be shortened and path plan performance may be improved.
Abstract:
An autonomous moving device includes a travel unit with a wheel driven by a motor and an upper body including an environment-recognition sensor that detects an obstacle in a traveling direction. The upper body includes means that recognize device and obstacle positions, means that evaluates avoidance capability, and means that obtains priority of collision avoidance of an estimated passage area of the obstacle. The upper body further includes a control unit that moves the travel unit to an area where an estimated passage area of an obstacle whose priority of collision avoidance is high that does not overlap an area where the travel unit is located and which is an area where collision can be avoided even if an area where an estimated passage area of an obstacle whose priority of collision avoidance is low overlaps the area where the travel unit is located.
Abstract:
A walking robot and a simultaneous localization and mapping method thereof in which odometry data acquired during movement of the walking robot are applied to image-based SLAM technology so as to improve accuracy and convergence of localization of the walking robot. The simultaneous localization and mapping method includes acquiring image data of a space about which the walking robot walks and rotational angle data of rotary joints relating to walking of the walking robot, calculating odometry data using kinematic data of respective links constituting the walking robot and the rotational angle data, and localizing the walking robot and mapping the space about which the walking robot walks using the image data and the odometry data.
Abstract:
A device 11 includes a floor surface information acquisition portion 21 which acquires floor surface information in a plurality of local regions of a floor surface. The gait generator 22 of the device 11 sets the desired landing position and posture of a free leg 3 of a robot 1 within one local region and determines a desired horizontal motion trajectory of the distal end of the free leg 3 to determine a desired vertical motion trajectory of the distal end of the free leg 3 so that the height of the distal end of the free leg 3 is equal to or higher than a lower-limit height determined to prevent a contact between the distal end of the free leg 3 and the floor surface of the local region at the positions of a plurality of sampling points on the desired horizontal motion trajectory.