Abstract:
A substrate capable of achieving a lowered probability of defects produced in a step of forming an epitaxial film or a semiconductor element, a semiconductor device including the substrate, and a method of manufacturing a semiconductor device are provided. A substrate is a substrate having a front surface and a back surface, in which at least a part of the front surface is composed of single crystal silicon carbide, the substrate having an average value of surface roughness Ra at the front surface not greater than 0.5 nm, a standard deviation σ of that surface roughness Ra not greater than 0.2 nm, an average value of surface roughness Ra at the back surface not smaller than 0.3 nm and not greater than 10 nm, standard deviation σ of that surface roughness Ra not greater than 3 nm, and a diameter D of the front surface not smaller than 110 mm.
Abstract:
The present invention discloses a method for fabricating semiconductor wafers applicable to IC manufacture, which comprises steps: providing an ingot; slicing the ingot into a plurality of wafers; using a laser to illuminate the surface of the wafers to eliminate the saw marks generated by slicing and fuse the microcracks on the surface of the wafers; pickling, polishing and inspecting the wafers. The present invention uses intensive laser energy to remove saw marks generated by slicing and fuse microcracks generated by stress. Thereby, the effect of isotropic etching is reduced in the succeeding pickling procedures, and the damage layer is minimized. Thus, the thickness of the removed material is reduced, and a single ingot can be sliced into more wafers.
Abstract:
A method and apparatus for planarizing a substrate are provided. A substrate carrier head with an improved cover for holding the substrate securely is provided. The cover may have a bead that is larger than the recess into which it fits, such that the compression forms a conformal seal inside the recess. The bead may also be left uncoated to enhance adhesion of the bead to the surface of the groove. The surface of the cover may be roughened to reduce adhesion of the substrate to the cover without using a non-stick coating.
Abstract:
A semiconductive substrate, such as a silicon wafer, is mounted on a baseplate for inclusion in an optical device such as a liquid crystal light valve. An optical flat presses the top surface of silicon wafer toward the baseplate and against an O-ring seal surrounding a fluid adhesive. The fluid adhesive hydrostatically distributes the force of compression to guarantee optical flatness and self-compensation for the amount fluid adhesive surrounded by the O-ring. The optical flatness of the semiconductor substrate is limited only by the flatness of the optical flat against which it is compressed. Parallel alignment of the optical flat, the substrate and the baseplate is achieved by reflecting a laser beam through the semiconductive substrate and observing the interference fringes therein, while adjusting the relative alignment so as to maximize the distance between fringes.
Abstract:
To provide a method of manufacturing silicon wafers having a low oxygen concentration and being provided with the gettering capability of heavy metals even when the density of BMD is low. The method includes a step of placing wafers sliced from a silicon single crystal and having an oxygen concentration in the range of 1×1016 atoms/cm3 to 7×1017 atoms/cm3, in a chamber and a step of performing rapid thermal processing at a maximum temperature reached of not less than 1250° C. or not more than 1350° C. after introducing a mixed gas having an oxygen partial pressure in the range of 1% to 10% of oxygen and an inert gas.
Abstract:
Provided are a film for manufacturing semiconductor component, a film for electronic component manufacture, a method for manufacturing a semiconductor component using such a film for manufacturing semiconductor component, and a method for manufacturing an electronic component using such a film for electronic component manufacture. The film for component manufacture includes a base layer and an adhesive layer provided on one surface side of the base layer, and the Ra (μm) of the surface of one side of the base layer on which the adhesive layer is not provided is 0.1 to 2.0, and the Rz (μm) is 1.0 to 15. The method using the film for component manufacture includes a segmenting step, a pickup step, and an evaluation step prior to the pickup step.
Abstract:
A robot apparatus may include an upper arm adapted to rotate about a first rotational axis and a forearm rotatably coupled to the upper arm at a second rotational axis. A first wrist member may be rotatably coupled to the forearm at a third rotation axis. A second wrist member may be rotatably coupled to the forearm at the third rotation axis. A first end effector may be coupled to the first wrist member and a second end effector may be coupled to the second wrist member. The first wrist member and the second wrist member may be configured to rotate about the third rotational axis between a first pitch and a second pitch as a function of extension of the robot apparatus. Other apparatus and methods are disclosed.
Abstract:
A system includes a plurality of semiconductor processing tools; a carrier purge station; a carrier repair station; and an overhead transport (OHT) loop for transporting one or more substrate carriers among the plurality of semiconductor processing tools, the carrier purge station, and the carrier repair station. The carrier purge station is configured to receive a substrate carrier from one of the plurality of semiconductor processing tools, purge the substrate carrier with an inert gas, and determine if the substrate carrier needs repair. The carrier repair station is configured to receive a substrate carrier to be repaired and replace one or more parts in the substrate carrier.
Abstract:
A semiconductor ingot is sliced to obtain a semiconductor slice with a front side surface and a rear side surface parallel to the front side surface. A passivation layer is formed directly on at least one of the front side surface and the rear side surface. A barrier layer including least one of silicon carbide, a ternary nitride, and a ternary carbide is formed on the rear side surface.
Abstract:
A method including bonding a process wafer having integrated circuits and a carrier wafer having at least one alignment mark to form a wafer assembly. The method further includes aligning the wafer assembly using the at least one alignment mark of the carrier wafer.