Abstract:
A semiconductor device of the present invention includes a semiconductor element having an electrode pad; a substrate over which the semiconductor element is mounted and which has an electrical bonding part; and a bonding wire electrically connecting the electrode pad to the electrical bonding part, wherein a main metal component of the electrode pad is the same as or different from a main metal component of the bonding wire, and when the main metal component of the electrode pad is different from the main metal component of the bonding wire, a rate of interdiffusion of the main metal component of the bonding wire and the main metal component of the electrode pad at a junction of the bonding wire and the electrode pad under a post-curing temperature of an encapsulating resin is lower than that of interdiffusion of gold (Au) and aluminum (Al) at a junction of aluminum (Al) and gold (Au) under the post-curing temperature.
Abstract:
A semiconductor device includes a semiconductor element that is mounted on a substrate, an electrode pad that contains aluminum as a main component and is provided in the semiconductor element, a copper wire that contains copper as a main component and connects a connection terminal provided on the substrate and the electrode pad, and an encapsulant resin that encapsulates the semiconductor element and the copper wire. When the semiconductor device is heated at 200° C. for 16 hours in the atmosphere, a barrier layer containing any metal selected from palladium and platinum is farmed at a junction between the copper wire and the electrode pad.
Abstract:
A module includes a semiconductor chip having at least a first terminal contact surface and a second terminal contact surface. A first bond element made of a material on the basis of Cu is attached to the first terminal contact surface, and a second bond element is attached to the second terminal contact surface. The second bond element is made of a material different from the material of the first bond element or is made of a type of bond element different from the type of the first bond element.
Abstract:
A secondary alloyed 1N copper wire for bonding in microelectronics contains one or more corrosion resistance alloying materials selected from Ag, Ni, Pd, Au, Pt, and Cr. A total concentration of the corrosion resistance alloying materials is between about 0.09 wt % and about 9.9 wt %.
Abstract:
A manufacturing method for a silver alloy bonding wire and products thereof A primary material of Ag is melted in a vacuum melting furnace, and then a plurality of secondary metal materials are added into the vacuum melting furnace and co-melted with the primary material to obtain a silver alloy ingot. The obtained silver alloy ingot is drawn to obtain a silver alloy wire. The silver alloy wire is then drawn to obtain a silver alloy bonding wire with a predetermined diameter.
Abstract:
A manufacturing method for a composite metal bonding wire and products thereof. A material of Ag and Au is co-melted in a vacuum melting furnace, and then a plurality of trace metal elements are added into the vacuum melting furnace and co-melted with the material to obtain a composite metal ingot. The obtained composite metal ingot is drawn to obtain a composite metal wire. The composite metal wire is then drawn to obtain a composite metal bonding wire with a predetermined diameter.
Abstract:
A module includes a semiconductor chip having at least a first terminal contact surface and a second terminal contact surface. A first bond element made of a material on the basis of Cu is attached to the first terminal contact surface, and a second bond element is attached to the second terminal contact surface. The second bond element is made of a material different from the material of the first bond element or is made of a type of bond element different from the type of the first bond element.
Abstract:
A semiconductor chip or wafer comprises a passivation layer and a circuit line. The passivation layer comprises an inorganic layer. The circuit line is over and in touch with the inorganic layer of the passivation layer, wherein the circuit line comprises a first contact point connected to only one second contact point exposed by an opening in the passivation layer, and the positions of the first contact point and the only one second contact point from a top view are different, and the first contact point is used to be wirebonded thereto.
Abstract:
A bond pad for an electronic device such as an integrated circuit makes electrical connection to an underlying device via an interconnect layer. The bond pad has a first layer of a material that is aluminum and copper and a second layer, over the first layer, of a second material that is aluminum and is essentially free of copper. The second layer functions as a cap to the first layer for preventing copper in the first layer from being corroded by residual chemical elements. A wire such as a gold wire may be bonded to the second layer of the bond pad.
Abstract:
The present invention provides a gold alloy thin wire for semiconductor devices, which inhibits corrosion after heating and which improves long term reliability, in portions bonded to the aluminum electrodes. The gold alloy thin wires of the present invention comprise the following group elements. (1) The gold alloy thin wire contains, as basic alloying components, 0.005 to 0.3% by weight of Mn and 0.005 to 1.0% by weight of Pd. (2) A gold alloy thin wire further contains at least one element selected from Pt, Ag and Cu in a total amount of 0.01 to 1.0% by weight in addition to the basic alloying components mentioned above. (3) A gold alloy thin wire further contains at least one element selected from Ca, Be, In and rare earth elements in a total amount of 0.0005 to 0.05% by weight in addition to the components in (1) or (2).