Abstract:
Distal connector assemblies that are on the distal end of medical lead extensions provide increased rigidity by including a rigid holder that contains the electrical connectors. The electrical connectors are separated within the rigid holder by insulative spacers that may be individual items or may be formed from a compliant carrier that the electrical connectors may reside within where the carrier is positioned within the rigid holder. The rigid holder may also contain a set screw block defining set screw bore or the rigid holder may include an integral portion that defines a set screw bore. The integral portion may include a slot to allow a molding pin loaded with the electrical connectors and other components to be dropped into a cavity of the rigid holder. An overmold may be present to surround the rigid body containing the electrical connectors and insulative spacers.
Abstract:
Connector assemblies formed by attaching two stamped housing sections to form a connector housing having a housing groove with a groove bottom and two side walls are disclosed. Using stamped housing sections can reduce manufacturing costs and simplifies assembly, among other things. The connector housings with a canted coil spring can be used as a mechanical connector and/or as an electrical connector for numerous applications and across numerous industries. The canted coil springs can have complex shapes, with optional dimples.
Abstract:
A catheter and method for the treatment of a patient having atrial flutter or other arrhythmia comprises an elongated catheter body having an outer wall, proximal and distal ends, and at least one lumen extending therethrough. Further it has a distal tip section comprising a flexible tubing having a proximal end and a distal end and a plurality of lumens extending therethrough. The proximal end of the tip section is fixedly attached to the distal end of the catheter body. The tip section further comprises a nitinol tube having slots formed therein which causes the distal tip section to deflect using the same puller-wire action used to cause the deflectable catheter to deflect at a point proximal to the distal tip section.
Abstract:
Disclosed are systems for wireless energy transfer including transcutaneous energy transfer. Embodiments are disclosed for electrical connections between an implanted wireless receiver and an implanted medical device powered by the receiver. Methods for manufacturing and using the devices and system are also disclosed.
Abstract:
Intravascular devices, systems, and methods are disclosed. In some embodiments, side-loading electrical connectors for use with intravascular devices are provided. The side-loading electrical connector has at least one electrical contact configured to interface with an electrical connector of the intravascular device. A first connection piece of the side-loading electrical connector is movable relative to a second connection piece between an open position and a closed position, wherein in the open position an elongated opening is formed between the first and second connection pieces to facilitate insertion of the electrical connector between the first and second connection pieces in a direction transverse to a longitudinal axis of the intravascular device and wherein in the closed position the at least one electrical contact is electrically coupled to the at least one electrical connector received between the first and second connection pieces.
Abstract:
According to various embodiments, a medical monitoring system includes an extension cable for connecting a medical monitoring device to a sensor cable of a sensor. The extension cable includes a head for accepting a plug of the sensor club, wherein the head includes a lid for restraining the plug within an port of the head of the extension cable. Further, the head includes a hinge configured to allow the lid to rotate about the hinge, wherein the hinge is located within the head such that the head includes substantially flat outer surfaces.
Abstract:
A vented set screw is used to secure a connection between an implantable medical device and an implantable lead. The vented set screw includes one or more venting channels that allow liquid and/or gas to flow out of the implantable medical device when the implantable lead is being inserted into the implantable medical device and secured during an implantation procedure. This prevents pressure from building up at the connection, thereby ensuring proper performance of sensing and/or therapy delivery functions of the implantable medical device.
Abstract:
Described herein is a multi-pin flex-based electrical plug and socket that can be incorporated into a hearing aid and be used to serve two purposes depending on the orientation with which the plug is inserted into the socket. For example, the plug may be inserted into the socket in a first orientation (e.g., right-side up) for programming the hearing aid and inserted in a second orientation (e.g., upside down) for inputting a DAI signal. In an alternate embodiment, the plug and socket forms a both-ways-okay connector such that the plug can be inserted in a either a first orientation or a second orientation (e.g., either right-side up or upside down) and still function.
Abstract:
A system for providing current to perform a surgical procedure includes an electrosurgical device having a conductive cutting wire and a power source with a power cord providing current to the cutting wire from a power source. The power cord and device are connected via a magnetic connection. The magnetic connection includes a device housing coupled to a cord housing, where a magnetic post is received in a recess for mechanically and electrically connecting the cutting wire and an active wire of the power cord. The recess and the magnetic post can be coaxial, with the axes being perpendicular to longitudinal axes of the device housing and the cord housing so that the connection can withstand a force exerted along the longitudinal axis, but a sufficient force transverse to the longitudinal axes and along the axes of the recess and the post can de-couple the magnetic connection.
Abstract:
A connection facility for connecting an electrocardiogram electrode to a data acquisition and/or transfer facility includes a signal line and a connecting element for connecting the signal line to the electrocardiogram electrode. The connecting element has a clamping body with two clamping jaws connected by an elastic reset element between a front and a rear end of the clamping body, and a contact element for making contact with the electrocardiogram electrode arranged at the front end of the clamping body and connected in an electrically conducting manner to the signal line. The connecting element has a grip region, in which the jaw width is wider than the jaw width at the front end. The contact element is arranged centrally in the jaw width of the clamping jaws and has an extension in the direction of the jaw width, which is smaller than the jaw width at the front end.