Abstract:
An electronic apparatus is disclosed. The electronic apparatus includes a strap, a body unit movably disposed on the strap, a sensing unit that detects a change of position of the body unit on the strap, and a processor that detects a user interaction corresponding to the change of position.
Abstract:
Head-mounted display systems and methods of operation that allow users to couple and decouple a portable electronic device such as a handheld portable electronic device with a separate head-mounted device (e.g., temporarily integrates the separate devices into a single unit) are disclosed. The portable electronic may be physically coupled to the head-mounted device such that the portable electronic device can be worn on the user's head. The portable electronic device may be operatively coupled to the head-mounted device such that the portable electronic device and head mounted device can communicate and operate with one another. Each device may be allowed to extend its features and/or services to the other device for the purpose of enhancing, increasing and/or eliminating redundant functions between the head-mounted device and the portable electronic device.
Abstract:
A cable assembly for electronic devices such as cellular telephones and music devices is disclosed. The cable assembly can comprise either one or two earpieces, each of which is configured to be received into the concha of a user's ear. The earpiece(s) can be configured so as to be held in place by at least one anatomical structure of the concha. A speaker can be in acoustic communication with each earpiece. A cable can be configured to communicate a signal representative of sound from the electronic device to each earpiece. A microphone can be permanently attached or removably attachable to the cable to facilitate use with a cellular telephone. The cable assembly can facilitate hands free operation of a cellular telephone and can facilitate listening to a music device. Other implementations and related methods are also disclosed.
Abstract:
An audio apparatus is configured to switch, when there exists a first audio interface between the audio apparatus and a computer apparatus, to using a second audio interface between the audio apparatus and the computer apparatus, the second audio interface being different from the first audio interface. The switching comprises: receiving, via the first audio interface, combined audio data and non-audio data, the non-audio data comprising a request to switch to using the second audio interface; obtaining the request from the data; and, in response to obtaining the request, transmitting to the computer apparatus a confirmation of switching to using the second audio interface. The audio apparatus and the computer apparatus are described and claimed.
Abstract:
The invention discloses a headset communication method under a strong-noise environment and a headset. The method comprises: using earplugs to reduce medium and high frequency noises entering an ear canal, using an external connection cavity in parallel connection with the ear canal to divert medium and low frequency noises; using an internal microphone to pick up the sound in the ear canal and an environmental noise signal entering the ear canal, using an external microphone to pick up the environmental noise signal, and taking the external microphone signal as reference signals to eliminate the noise element in the internal microphone signal and remain the voice element to obtain transmitting terminal signals of the headset; using sound dynamic compression technology to cut down and compensate the signals picked up by the external microphone in terms of sound pressure level such that the sound pressure range is compressed to a range acceptable by human ears and the signals picked up by the external microphone and the receiving terminal signal received by the headset are broadcast together through a receiver of the headset. By means of the technical scheme of the present invention, the functions of protecting hearing, enhancing voice and monitoring a three-dimensional environment can be achieved comprehensively under strong-noise environments.
Abstract:
In one arrangement, a first device presents a display that is based on context data, derived from one or more of its sensors. This display is imaged by a camera in a second device. The second device uses context data from its own sensors to assess the information in the captured imagery, and makes a determination about the first device. In another arrangement, social network friend requests are automatically issued, or accepted, based on contextual similarity. In yet another arrangement, delivery of a message is triggered by a contextual circumstance other than (or in addition to) location. In still another arrangement, two or more devices automatically establish an ad hoc network (e.g., Bluetooth pairing) based on contextual parallels. In still another arrangement, historical context information is archived and used in transactions with other devices, e.g., in challenge-response authentication. A great number of other features and arrangements—many involving head-mounted displays—are also detailed.
Abstract:
A wireless audio control apparatus comprises a U-shaped outer shell having an outer surface, an inner surface and a plurality of side surfaces. A spring clip is attached to the inner surface of the outer shell. A speaker, a microphone and at least one control interface are located on the outer surface of the outer shell. A jack sealed behind a jack cover is located on at least one of the plurality of side surfaces of the outer shell. A wireless transceiver, an amplifier and a rechargeable battery are located inside the outer shell. The wireless audio control apparatus is configured to control the audio output from a wirelessly attached personal audio device while being removably affixed to a generally planar object worn by a user.
Abstract:
A system for receiving multiple conversations or messages and for playing the multiple conversations or messages with a mobile device and wireless earpieces. The system may determine various presentation parameters based on various characteristics of the received messages and may play the messages such that audio appears at distinguishing locations around the user. The system may change how messages and/or conversations are played in response to recognize a change in the focus of the user based on detected user inputs, such as body movement gestures.
Abstract:
A listening device including an energy source configured to supply power to at least one rechargeable portable device. The energy source is rechargeable and is housed within the listening device.
Abstract:
The present invention discloses a wireless receiver capable of outputting a notification on an event occurred in a mobile terminal and remotely controlling the mobile terminal and a method of controlling therefor. To this end, a wireless receiver may include an earphone, a short-range communication unit configured to communicate with the mobile terminal and if the mobile terminal receives an incoming signal, a controller configured to control a first audio data including information on a caller of the incoming signal to be received from the mobile terminal and control the first audio data to be outputted via the earphone.