Abstract:
A manual control unit having a handle body in which is integrated at least one manually operable control element.The handle body has a housing with a spherically bulged central section for ergonomically supporting an inner surface of a hand, the central section forming an upper apex surface of the handle body, and in that the at least one control element is arranged at a distance from the apex surface in such a way that, when the inner surface of a hand is being supported, the control element can be operated by one finger of the hand.
Abstract:
A method for controlling a marine vessel having a first steering nozzle, a reversing deflector and at least one of a bow thruster and a second steering nozzle is disclosed. The method comprises any of the acts of inducing a net transverse thrust to the marine vessel in response to a transverse thrust component signal, without substantially inducing any forward-reverse thrust or rotational thrust to the marine vessel, or inducing a net forward-reverse thrust to the marine vessel in response to a forward-reverse thrust component signal without substantially inducing any transverse thrust or rotational thrust to the marine vessel, or inducing a net rotational thrust to the marine vessel in response to the rotational thrust component signal without substantially inducing any forward-reverse thrust or transverse thrust to the marine vessel.
Abstract:
A shift device includes a housing, a shift lever, a sensor unit. The shift lever is moved forward and rearward, and leftward and rightward of the shift device for selecting the connection state of the transmission of a vehicle. The sensor unit is attached to the housing. The sensor unit includes a first MRE element, a second MRE element, a light sensor, a first microswitch, and a second microswitch, which are integrated. The first MRE element, the second MRE element, and the light sensor detect the position of the shift lever in the front-rear direction. The first and second microswitches detect the position of the shift lever in the left-right direction.
Abstract:
The present invention discloses a direction guiding apparatus for indicating a guidance direction to a user. The direction guiding apparatus includes an operation device having an operations part movable on an operation plane, and a control part for transmitting control data to the operation device for controlling the movement of the operations part. The guidance direction is distinguishable by the movement of the operations part.
Abstract:
A joystick input device includes a casing having a tiltable-component supporter, a tiltable component held in the tiltable-component supporter, tilt-detecting means for detecting a state of tilting of the tiltable component, a pushable component held in the tiltable component, push-detecting means for detecting a state of pushing of the pushable component, and an operation component for performing a tilt operation of the tiltable component and a push operation of the pushable component. The tiltable-component supporter has a pushable-component through-hole through which the leading edge of the pushable component can pass. The tiltable-component supporter regulates a tilt operation of the tiltable component when the leading edge of the pushable component passes through the pushable-component through-hole. A pushable-component stopping portion is formed around the pushable-component through-hole to regulate a push operation of the pushable component when the tiltable component is tilted.
Abstract:
1. Vehicle (10), in particular tracked vehicle (10).2.1 The invention relates to a vehicle (10), in particular a tracked vehicle (10), having a manual controller (40) for controlling driving functions of the vehicle (10) and/or additional functions of the vehicle (10), the manual controller (40) having a base (42) and a handle which can move in relation to the base (44) and is designed such that it can pivot at least about a substantially horizontal pivot axis (44a, 44b) for control purposes.2.2 According to the invention, the handle (44) has a contact zone (46) which is to be held by the inner surface of a hand, the manual controller (40) having at least one touch sensor (50, 52) which is designed to detect that a user is touching the handle (44).
Abstract:
This invention aims at preventing a space including the guide surface of a reticle stage from interfering with an exposure light beam. In order to achieve this object, in a movable stage apparatus having a reticle stage on which a reflecting reticle is to be mounted, when the space is divided by a plane including the reflection surface of the reticle, the guide surface for moving the reticle is arranged in a space opposite to a space where an exposure light beam reflected by the reticle passes.
Abstract:
A device for controlling a gearbox, in particular for a motor vehicle, comprising fixed permanent magnets, mounted on a gearbox casing and cooperating by magnetic attraction or repulsion with a mobile permanent magnet mounted on a transmitter member driving into rotation or translation a shaft for selecting and/or changing gears, in order to define stable gear selecting or changing positions.
Abstract:
A driving operation device includes an input portion, an output portion and a form modifying portion that transmits an amount of operation of the input portion to the output portion. The form modifying portion can modify an orientation of the input portion depending on a position of the output portion. This can maintain the input portion vertical or horizontal, for example. The form modifying portion also can modify a ratio of an amount of operation of the input portion to an amount of change in the output result based upon the position of the output portion.
Abstract:
A human-machine interface assembly is implemented with a gimbal assembly that includes a roll hub, a pitch hub, and a main hub. The gimbal assembly further includes a plurality of bearings, and is mounted via a plurality of bearing sets, that are each disposed in a free floating manner. As a result, each of the bearings is self-aligning and self-adjusting when the gimbal assembly is assembled and mounted. The gimbal assembly additionally includes a plurality of integral stops that mechanically limit movement of a user interface to predetermined pitch and roll angles.