Abstract:
A method of driving a plasma display panel including a plurality of priming electrodes. The pulse width of scan pulses applied to some of a plurality of scan electrodes in which writing is performed and priming discharge is caused with the scanning of the scan electrodes is larger than the pulse width of scan pulses applied to the other scan electrodes in which writing is performed but no priming discharge is caused with the scanning of the scan electrodes.
Abstract:
A plasma display includes a plasma display having a plurality of X electrodes and Y electrodes arranged alternately, and a plurality of M electrodes respectively formed between the X and Y electrodes, and a plurality of insulated address electrodes crossing the X, Y, and M electrodes. A common coupling line is formed on the plasma display panel and is coupled to a first voltage, the common coupling line coupling the X electrodes in common. A Y electrode driver applies a waveform for driving the Y electrode. An M electrode driver applies a waveform for driving the M electrode. A flexible printed circuit couples the M electrode driver and the M electrodes.
Abstract:
A structure and driving method of a plasma display panel is provided, in which an amount of priming particles within a discharge cell increases to reduce discharge lag of address discharge. The structure of the plasma display panel includes a plurality of sustain electrode pairs successively formed on an upper electrode, a plurality of common electrodes formed one by one between a pair of the sustain electrodes, and a dielectric layer formed on the substrate to deposit the sustain electrodes and the common electrodes. The method for driving the plasma display panel includes the steps of applying a common pulse, which is periodically turned on/off, to the common electrodes, applying a scan pulse to one of a pair of the sustain electrodes, and applying an address pulse to the address electrodes when the scan pulse is applied to the one sustain electrode. Thus, since discharge conditions within the discharge cell can be improved, discharge lag less occurs than the related art plasma display panel.
Abstract:
A plasma display panel can stabilize address properties. A front substrate (1) and a back substrate (2) are disposed to face each other, and a discharge space (3) is formed and partitioned by barrier ribs (11) so as to form priming discharge cells (16) and main discharge cells (12). Forming priming electrodes (15) onto a dielectric layer (17) in the priming discharge cells (16) can secure the isolation voltage between data electrodes (10) and the priming electrodes (15), and can also secure the generation of a priming discharge prior to a main discharge.
Abstract:
The present invention relates to a plasma display panel comprising transparent electrodes and a dielectric layer covering said transparent electrodes on at least one substrate of a pair of substrates facing each other with a discharge space therebetween, the main constituent of the transparent electrodes is included in the dielectric layer. Further, the main constituent of the transparent electrode is indium oxide and indium oxide is included in the dielectric layer. By including the main constituent of the transparent electrodes in the dielectric layer, it is believed that the drop in conductivity caused by diffusion of the dielectric substance in the transparent electrodes during high-temperature processing is prevented.
Abstract:
A method of driving a surface-discharge type plasma display panel, comprises: providing an address period for selecting picture elements to be lighted and picture elements not to be lighted in accordance with displaying data; providing a discharge maintaining period for alternatively applying discharge maintaining pulses to first and second maintaining electrodes so as to maintain the lighted picture elements and the not-lighted picture elements; applying two discharge maintaining pulses having different phases to every two second maintaining electrodes between which there is a first maintaining electrode serving as a common electrode for the two second maintaining electrodes.
Abstract:
A plasma display apparatus which improves the contrast of images displayed thereon. A plurality of paired row electrodes Xi, Yi are formed in parallel with each other in a surface discharge AC plasma display apparatus. A plurality of column electrodes are formed facing to the paired row electrodes through a discharge space, and extend perpendicularly to the paired row electrodes so as to define a unit light emitting region including an intersection formed every time the column electrode cross with the paired row electrodes. A gas mixture including Ne.Xe is sealed in the discharge space at a pressure ranging from 400 torr to 600 torr. The row electrodes in the unit light emitting region are formed to have a width w of 300 .mu.m or more. The intensity of light emitted by discharge not related to display is suppressed.
Abstract:
A plasma display panel comprises: a front glass base-plate provided on the front side of the plasma display panel; a rear glass base-plate provided on the rear side of the plasma display panel; a plurality of row electrode pairs provided on an internal surface of the front glass base-plate; a dielectric layer covering the row electrode pairs; a plurality of column electrodes provided on an internal surface of the rear glass base-plate. At least one electrode of each row electrode pair has a main body portion extending in a horizontal direction, and has a protruding portion in a unit luminous area. Further, each protruding portion consists of a transparent electrically conductive film and is formed into an isolated island in a unit luminous area.
Abstract:
Disclosed are a plasma display panel and a manufacturing method therefor. According to the present invention, a method for manufacturing a plasma display panel comprises the steps of: forming a plurality of electrodes on insulating substrates; forming a conductive paste layer on the insulating substrates ; forming a masking film on the paste layer at locations between the electrodes; forcefully impelling particles against the paste layer to remove, by etching, portions of the paste layer where the masking film is not deposited; and exposing the paste layer to an annealing atmosphere so as to form partition walls between the electrodes.
Abstract:
A plasma display panel has a matrix of plural first straight electrodes and plural straight second electrodes, respectively crossing each other, and a unit color element located at a crossing point of the first and second electrodes. A plurality of separator walls are spaced apart from each other and extend along the second electrodes, dividing a discharge space into a plurality of channels extending along respective, second electrodes. The separator walls undulate with a fixed periodicity so as to define alternating wide and narrow portions aligned along each channel and the respective first electrode. A fluorescent material is coated in each channel, the colors emitted from the fluorescent material being identical in each channel. A gas discharge takes place selectively at the wide portions in cooperation with the respective first and second electrodes. Optionally, connecting walls connect respective narrow portions of the adjacent separator walls, a height of the connecting wall being substantially lower than the height of the separator walls so as to allow the wide and narrow portions of each channel to be spatially continuous throughout a length of the channel.