Abstract:
A method for use in a Dynamic Spectrum Manager (DSM) for coordinating asynchronous silent periods in a network, the method comprising detecting a primary user in the network, transmitting a Silent Period Start Control Message to one or more cognitive radio (CR) nodes in the network, wherein the message indicates the start and duration of a silent period and initiates spectrum sensing, receiving a Measurement Report Control Message from the one or more CR nodes in the network indicating results of spectrum sensing, and transmitting a message to the one or more CR nodes, wherein the message instructs the one or more CR nodes to move to a different frequency based on the spectrum sensing results.
Abstract:
Described herein is a silent period method and apparatus for dynamic spectrum management. The methods include configuration and coordination of silent periods across an aggregated channel in a wireless communication system. A silent period management entity (SPME) dynamically determines silent period schedules for channels based on system and device information and assigns a silent period duration and periodicity for each silent period. The SPME may reconfigure the silent period schedule based on system delay, system throughput, channel quality or channel management events. A silent period interpretation entity (SPIE) receives and implements the silent period schedule. The silent periods for the channels may be synchronized, independent, or set-synchronized. Interfaces for communicating between the SPME, SPIE, a channel management function, a medium access control (MAC) quality of service (QoS) entity, a sensing/capabilities database, a MAC layer management entity (MLME) and a wireless receive/transmit unit (WTRU) MLME are described herein.
Abstract:
Systems and methods for dynamic white space management are described. First, local handling of channel queries, in which a channel query by a white space device (WSD) is handled by a local dynamic spectrum management (DSM) server, if the DSM server has all the information necessary for providing a response to the channel query. Second, a search extension, in which a WSDB passes part of a search for available channels to a local DSM server. Third, assisting of an available channel calculation, in which a DSM server provides spectrum sensing information to WSDBs to improve the available channel calculation within the WSDBs. And fourth, dynamic bandwidth management to meet the coexistence requirements. In addition, the content of the messages and procedures that enable the above value-adding functions and interactions with the WSDB systems are described.
Abstract:
A method for performing initial cell search in wireless communication system wherein unsuitable cells includes searching stored frequencies exhaustively and initial frequencies non-exhaustively. Initial frequencies may be searched exhaustively in certain circumstances. When performing exhaustive initial cell searches, primary synchronization codes that lead to unsuitable cells are excluded from subsequent initial cell searches performed on the same frequency.
Abstract:
A step-size estimator for controlling the step-size of an adaptive equalizer incorporated in a transceiver (e.g., a wireless transmit/receive unit (WTRU)). The step-size estimator updates at least one adaptive equalizer tap used by the adaptive equalizer based on an apparent speed of a channel established between the transceiver and another transceiver. The step-size estimator includes a speed estimator, a signal-to-noise ratio (SNR) averager and a step-size mapping unit. The speed estimator is used to estimate the apparent speed of the channel (i.e., the observed and/or measured rate of change of the channel impulse response). The SNR averager generates a common pilot channel (CPICH) SNR estimate. The step-size mapping unit uses the speed estimate and the CPICH SNR estimate to generate a step-size parameter, μ, and a filter taps leakage factor parameter, α, used by the adaptive equalizer to update the filter tap coefficient.
Abstract:
A method and system for determining amplitude and phase compensation values used to adjust the amplitude and phase characteristics of real and imaginary signal components of complex signals processed by an analog radio transmitter. The compensation values may be determined in response to detecting a significant temperature change in the transmitter. Corresponding amplitude and phase adjustment signals having levels that correspond to the compensation values are provided to respective amplitude and phase imbalance compensation modules to adjust the amplitude and phase characteristics of at least one of the real and imaginary signal components.
Abstract:
A method and apparatus for estimating and correcting baseband frequency error in a receiver. In one embodiment, an equalizer performs equalization on a sample data stream and generates filter tap values based on the equalization. An estimated frequency error signal is generated based on at least one of the filter tap values. A rotating phasor is generated based on the estimated frequency error signal. The rotating phasor signal is multiplied with the sample data stream to correct the frequency of the sample data stream. In another embodiment, a channel estimator performs channel estimation and generates Rake receiver finger weights based on at least one of the finger weights. An estimated frequency error signal is generated based on at least one of the finger weights.
Abstract:
A user equipment (UE) for establishing a communication link comprising a first module for processing a received communication signal and generating an index value associated with a primary synchronization code within said communication signal; a second module for generating a scrambling code group number, a slot offset, and secondary synchronization code based on output provided by the first module; a third module for retrieving a primary scrambling code based on the scrambling code group number and slot offset; and a controller coupled to said first module, second module, and third module for controlling an a search frequency of the UE for establishing a communication link.
Abstract:
The invention provides embodiments to facilitate cell search. In one embodiment, received samples are split into a plurality of sample sets for processing. Each of the sets is processed and an accumulated result is divided by an estimated noise value. In another embodiment, a code correlator correlates the received signal with a primary synchronization code and an auxiliary code correlator having a same length as the code correlator correlates the received signal with a code having a low cross correlation with the primary synchronization code. In another embodiment, a division of an accumulated result with a noise estimate is performed using indexes of the most significant bits.
Abstract:
A method and apparatus for use in connection with wireless communication to adjust the frequency of an oscillator to synchronize with a received signal by correlating a synchronization code channel with training sequences to estimate positive and negative offsets which are employed to estimate an error, which is then filtered. The filtered output preferably provides a voltage controlling a voltage controlled oscillator (VCO). The same technique may be employed to control a numeric controlled oscillator (NCO).