Abstract:
The invention is directed to carbon fibers having high tensile strength and modulus of elasticity. The invention also provides a method and apparatus for making the carbon fibers. The method comprises advancing a precursor fiber through an oxidation oven wherein the fiber is subjected to controlled stretching in an oxidizing atmosphere in which tension loads are distributed amongst a plurality of passes through the oxidation oven, which permits higher cumulative stretches to be achieved. The method also includes subjecting the fiber to controlled stretching in two or more of the passes that is sufficient to cause the fiber to undergo one or more transitions in each of the two or more passes. The invention is also directed to an oxidation oven having a plurality of cooperating drive rolls in series that can be driven independently of each other so that the amount of stretch applied to the oven in each of the plurality of passes can be independently controlled.
Abstract:
A honeycomb structure dial includes cells in which septums are located to provide acoustic dampening. The cells are formed by at least our walls wherein at least two of the walls are substantially parallel to each other. The septums include warp fibers and weft fibers that are substantially perpendicular to each other. The septums are oriented in the honeycomb cells such that the weft fibers and/or warp fibers are substantially perpendicular to the parallel walls.
Abstract:
The bandwidth or acoustical range of an acoustic structure is increased by locating a sound wave guide within the acoustic cell. The wave guide divides the cell into two acoustical chambers. The two chambers provide an effective increase in resonator length of the cell.
Abstract:
A method of preparing a polymer powder composition suitable for selective laser sintering and a powder composition obtained from the same. The polymer composition comprising at least two polyetherketoneketone polymorphs, each of the polymorphs having a different melting peak in a melting temperature range. The polymer is heated at a temperature below the lowest of the polymorphs melting peaks thereby decreasing the melting temperature range of the polymer composition. The treatment is especially useful with Cake B PEKK powder, which is otherwise unusable in SLS. Parts built from the treated powder using SLS have reduced surface anomalies and are easier to remove from the Cake bed.
Abstract:
A system and method for identifying test bars formed during a selective laser sintering build. A part cake is formed during a selective laser sintering build. The part cake comprises parts formed from a powder by selective laser sintering and unsintered powder around the formed parts. The parts include test bars for performing material testing. Each test bar includes a plurality of indentations in a first grip section and a second grip section. The plurality of indentations are arranged in a information providing pattern that is adapted to be readable after the test part is removed from the part cake.
Abstract:
A process for manufacturing a three-dimensional object from a powder by selective sintering the powder using electromagnetic radiation. The powder includes recycled PAEK. In one embodiment, the powder includes recycled PEKK. In one embodiment, the powder includes first recycle PEKK and second recycle PEKK. In one embodiment, the powder consists essentially of recycled PEKK. The process may include the step of maintaining a bed of a selective laser sintering machine at approximately 300 degrees Celsius and applying a layer of the powder to the bed. The average in-plane tensile strength of the three-dimensional object is greater than that of a three-dimension object manufactured by selective sintering using a powder including an unused PEKK powder.
Abstract:
A powder composition suitable for use in selective laser sintering for printing an object. The powder composition includes a first fraction including a plurality of polyaryletherketone (PAEK) particles having a mean diameter less than 30 microns, a second fraction having a plurality of polyaryletherketone (PAEK) particles having a mean diameter greater than 30 microns, and a third fraction having a plurality of carbon fibers. The first fraction and the second fraction are formed by an air classification separation performed on a pulverized powder. After the separation, the first fraction, the second fraction, and the third fraction are blended in a high intensity mixer. The powder composition when used in selective laser sinter results in parts with increased tensile strength and reduced surface roughness, among other improvements, as compared to similar powders omitting the first fraction. The PAEK may include polyetherketoneketone (PEKK).
Abstract:
Method for seaming a multi-sectional composite tooling for use in molding large composite structures. The tooling includes at least two tooling sections that are made from quasi-isotropic sheet molding compound. The two tooling sections are seamed together with a scarf plug at the tooling surface. The scarf plug is composed of specially oriented layers of consolidated quasi-isotropic sheet molding compound. The scarf plug is made from the same type of quasi-isotropic sheet molding compound that is used to make the tooling sections.
Abstract:
Acoustic honeycomb structures that include cells in which a friction-locking insertion process is used to locate acoustic barriers within honeycomb cells to provide multiple degree of freedom (MDOF) acoustic liners having a variety of acoustic resonator depths. Solid polymer films are formed into acoustic barrier caps. The acoustic barrier caps are friction-locked and bonded to cell walls at one or more cell depths to form acoustically reflective hard walls that form effective bottom ends for acoustic resonators.
Abstract:
A process for layer-by-layer manufacturing a three-dimensional object from a powder and objects made from the same is described. The process includes the step of applying a layer of a powder on a bed of a laser sintering machine. The powder includes polyetherketoneketone. The process further includes the step of solidifying selected points of the applied layer of powder by irradiation using heat energy introduced by a laser having a power L and successively repeating the step of applying the powder and the step of solidifying the applied layer of powder until all cross sections of a three-dimensional object are solidified. L is between 1 W and 20 W. In some embodiments L is between 1 and 10 W. In some embodiments, the powder is recycled PEKK powder. In some embodiments, the powder includes carbon fiber.