Abstract:
A method in which at least one piezoceramic sensor, which converts every mechanical force to which it is subjected into an electrical signal and having a Curie temperature higher than 200° C., is solidarized directly onto the surface of a metal support element of a vehicle braking element, which during use faces a vehicle element to be braked. While in contact with such a surface, an electrical circuit is implemented that picks up and eventually processes the electrical signal, the electrical circuit being connected with a connector integrated with the metal support element. An electrically insulating layer sandwiches the at least one piezoceramic sensor and the electrical circuit, and a block of friction material with an underlying damping layer is formed upon the electrically insulating layer. After forming the block of friction material, the piezoceramic sensor is polarized by applying a predetermined potential difference thereto by means of the connector.
Abstract:
Braking system (1) and method aimed to produce a forced increase in a damping layer (7) temperature of a brake pad (3), arranged between a metal support (5) and a friction material block (6) thereof, wherein the damping layer (7) is heated such as to stay at a temperature above a glass transition temperature of rubber components thereof, so assuring a maximum damping behavior; the heating is caused by magnetic induction generated by one or more electrically conducting coils (15) fed in AC by a power source (10) carried by the vehicle and arranged either integrated in the brake pad (3), e.g. carried by the support (5), or in the vicinity thereof.
Abstract:
Methods and equipment for determining conditions of adhesion between a first and a second mechanical element are disclosed. The mechanical elements are attached respectively to a first and second support, which are immersed in an electrolyte together with a counter-electrode and a reference electrode to form an electrochemical cell. The second mechanical element is a working electrode being connected to an insulated electric wire that is also connected to the counter-electrode. A first uncovered face of the second element is pressed against the first element. A potential is applied to the second element of at least one predetermined value and/or a predetermined electrical current. The method can include detecting the electrical current that is transmitted through the electrolyte as a function of the potential applied and/or the potential that is established as a function of the predetermined current.
Abstract:
A method of estimating wear of a vehicle brake element including at least a braking disk (10), a wearable block of friction material (20) and a support back plate (40) of the block of friction material (20), comprising at least: —providing a temperature sensor (100) configured and placed to sense the temperature of the support back plate (40) —providing an Electronic Processing Unit (200) connected to the temperature sensor (100); —providing an acquisition of the sensed temperature of the support back plate (40), a generation of a temperature signal of the sensed temperature and a transmission of the temperature signals to the Electronic Processing Unit (200); —and the Electronic Processing Unit (200) providing an estimation (500) of the thickness of the wearable block of friction material (20) by processing of the temperature signals.
Abstract:
Method and plant for manufacturing braking elements such as vehicle brake pads. The plant can comprise a first station that applies an adhesive to a first face of a metallic element; a second station that applies to the first face of the metallic element a block of friction material; a checking station that verifies the presence of the adhesive by detecting the gray level of a plurality of points of at least one zone of the first face; and a processing unit that compares the gray level detected for each point with a first threshold value, counts the number of points that have a gray level that satisfies a relationship (which is a function of the threshold value,) and compares such a value with a second threshold value to discard those metallic elements for which the percentage calculated does not correspond to the second threshold value.
Abstract:
A method in which at least one piezoceramic sensor, which converts every mechanical force to which it is subjected into an electrical signal and having a Curie temperature higher than 200° C., is solidarized directly onto the surface of a metal support element of a vehicle braking element, which during use faces a vehicle element to be braked. While in contact with such a surface, an electrical circuit is implemented that picks up and eventually processes the electrical signal, the electrical circuit being connected with a connector integrated with the metal support element. An electrically insulating layer sandwiches the at least one piezoceramic sensor and the electrical circuit, and a block of friction material with an underlying damping layer is formed upon the electrically insulating layer. After forming the block of friction material, the piezoceramic sensor is polarized by applying a predetermined potential difference thereto by means of the connector.
Abstract:
Method and plant for manufacturing braking elements such as vehicle brake pads. The plant can comprise a first station that applies an adhesive to a first face of a metallic element; a second station that applies to the first face of the metallic element a block of friction material; a checking station that verifies the presence of the adhesive by detecting the gray level of a plurality of points of at least one zone of the first face; and a processing unit that compares the gray level detected for each point with a first threshold value, counts the number of points that have a gray level that satisfies a relationship (which is a function of the threshold value,) and compares such a value with a second threshold value to discard those metallic elements for which the percentage calculated does not correspond to the second threshold value.
Abstract:
Various systems, devices, and methods for a vehicle smart brake pad comprising a sensor such as a force sensing device, and a production process thereof. For example, a production process of a vehicle brake pad can include the following steps in time sequence: applying an electrical circuit a support plate; screen printing on the electrical circuit of at least a first electrode; screen printing on the at least first electrode of a sheet of piezoelectric material; screen printing on the sheet of at least a second electrode; applying a friction pad on the support plate; and bulk polarizing the sheet of piezoelectric material by a supply of power to the at least first and second electrodes.
Abstract:
An asbestos-free organic friction material, in particular for producing brake pads and shoes for vehicles made up of a composition or mixture having a fibrous base, a filler, an organic binder and optional metal oxides. The composition is completely free of copper and copper compounds or alloys and includes in the fibrous base, together with inorganic and/or organic fibers, from 1% to 10% by volume, calculated relative to the total volume of the composition, of stainless steel fibers. The friction material further includes between 1% and 25% by volume of a system of fibrous oxides consisting of potassium hexatitanate and zirconia.
Abstract:
Brake pads are prepared using a formulation of friction material of the copper-free type (Low-Steel or Organic Non-Asbestos) and at least one friction surface of a brake disc, which is intended to cooperate with the brake pad, is covered with an anti-wear and anti-corrosion coating consisting of a surface layer of chromium carbide particles (Cr3C2) dispersed in a metallic matrix consisting of a NiCr alloy, and coupled to a second layer consisting of selected combinations of metallic materials, chosen from the group consisting of: Cr3C2-high density NiCr, NiAl alloys, FeNiCrMoSiC alloys, metallic nickel, NiCr alloys, and/or any combination of the above.