Abstract:
Method and systems related to monitoring right ventricular function during pacing by a cardiac rhythm management device are described. One or more pacing parameters are selected to provide cardiac resynchronization therapy. For example, the one or more pacing parameters may be selected to provide an optimal or improved therapy. The heart is paced using the selected pacing parameters. While pacing with the selected parameters, pressure is sensed via a pressure sensor disposed the pulmonary artery. The sensed pressure is analyzed to determine right ventricular function achieved during the pacing using the selected pacing parameters. A signal, such as an alert signal or control signal, is generated based on the right ventricular function achieved during the pacing.
Abstract:
Cardiac monitoring and/or stimulation methods and systems that provide one or more of monitoring, diagnosing, defibrillation, and pacing. Cardiac signal separation is employed for automatic capture verification using cardiac activation sequence information. Devices and methods sense composite cardiac signals using implantable electrodes. A source separation is performed using the composite signals. One or more signal vectors are produced that are associated with all or a portion of one or more cardiac activation sequences based on the source separation. A cardiac response to the pacing pulses is classified using characteristics associated with cardiac signal vectors and the signals associated with the vectors. Further embodiments may involve classifying the cardiac response as capture or non-capture, fusion or intrinsic cardiac activity. The characteristics may include an angle or an angle change of the cardiac signal vectors, such as a predetermined range of angles of the one or more cardiac signal vectors.
Abstract:
This document discusses, among other things, systems, devices, and methods measure an impedance and, in response, adjust an atrioventricular (AV) delay or other cardiac resynchronization therapy (CRT) parameter that synchronizes left and right ventricular contractions. A first example uses parameterizes a first ventricular volume against a second ventricular volume during a cardiac cycle, using a loop area to create a synchronization fraction (SF). The CRT parameter is adjusted in closed-loop fashion to increase the SF. A second example measures a septal-freewall phase difference (PD), and adjusts a CRT parameter to decrease the PD. A third example measures a peak-to-peak volume or maximum rate of change in ventricular volume, and adjusts a CRT parameter to increase the peak-to-peak volume or maximum rate of change in the ventricular volume.
Abstract:
A cardiac rhythm management system for providing a plurality of therapy modalities. For example, the system may include a cardiac resynchronization therapy module for providing cardiac resynchronization therapy and a pacemaker module for providing bradycardia therapy, as well as a selector module coupled to the cardiac resynchronization therapy module and the bradycardia module. The selector module may select an operating mode from among a plurality of operating modes including the cardiac resynchronization therapy module and the pacemaker module. Various manual and automatic methods may be used to select the operating mode. In addition, a reversion management system may be included to assist the cardiac rhythm management system to recover in case of a disruption to the system.
Abstract:
A method or system for computing and/or setting optimal cardiac resynchronization pacing parameters is presented. Among the parameters which may be optimized in this manner are an atrio-ventricular delay interval, an inter-atrial interval and a biventricular offset interval.
Abstract:
This document discusses, among other things, systems, devices, and methods measure an impedance and, in response, adjust an atrioventricular (AV) delay or other cardiac resynchronization therapy (CRT) parameter that synchronizes left and right ventricular contractions. A first example uses parameterizes a first ventricular volume against a second ventricular volume during a cardiac cycle, using a loop area to create a synchronization fraction (SF). The CRT parameter is adjusted in closed-loop fashion to increase the SF. A second example measures a septal-freewall phase difference (PD), and adjusts a CRT parameter to decrease the PD. A third example measures a peak-to-peak volume or maximum rate of change in ventricular volume, and adjusts a CRT parameter to increase the peak-to-peak volume or maximum rate of change in the ventricular volume.
Abstract:
A cardiac rhythm management system for providing a plurality of therapy modalities. For example, the system may include a cardiac resynchronization therapy module for providing cardiac resynchronization therapy and a pacemaker module for providing bradycardia therapy, as well as a selector module coupled to the cardiac resynchronization therapy module and the bradycardia module. The selector module may select an operating mode from among a plurality of operating modes including the cardiac resynchronization therapy module and the pacemaker module. Various manual and automatic methods may be used to select the operating mode. In addition, a reversion management system may be included to assist the cardiac rhythm management system to recover in case of a disruption to the system.
Abstract:
A cardiac rhythm management device is configured to detect oscillations in cardiac rhythm by comparing electrogram signals during successive heart beats. Upon detection of electrical alternans, the device may adjust its operating behavior to compensate for the deleterious effects of the condition.
Abstract:
A method and system are disclosed for setting the pacing parameters utilized by an implantable cardiac device in delivering cardiac resynchronization therapy. The system may, in different embodiments, be implemented in programming of the implantable device and an external programmer in communication therewith or in the programming of the implantable device by itself. The selection of the pacing parameters is based at least in part upon measurements of intrinsic cardiac conduction parameters. Among the pacing parameters which may be selected in this way are the atrio-ventricular delay interval used in atrial-tracking and AV sequential pacing modes and the biventricular offset interval.
Abstract:
A cardiac rhythm management device is configured to detect oscillations in cardiac rhythm by comparing electrogram signals during successive heart beats. Upon detection of electrical alternans, the device may adjust its operating behavior to compensate for the deleterious effects of the condition.