Abstract:
An electrophoretic display apparatus includes a bottom substrate, an electrophoretic layer, a color filter substrate and a spacing layer. The bottom substrate has a drive circuitry layer, and the electrophoretic layer is disposed on the drive circuitry layer of the bottom substrate. The color filter substrate is disposed above the electrophoretic layer, and the spacing layer is disposed between the color filter substrate and the electrophoretic layer. The electrophoretic display apparatus has better display quality. A spacing layer is also provided.
Abstract:
An electronic paper display device includes a first substrate, a plurality of display units and a plurality of light-emitting units. The first substrate includes first base and a plurality of electrodes disposed on the first base. The display units are disposed above the first substrate. The light-emitting units are respectively disposed between the display units and the first base.
Abstract:
The present invention relates to a touch display apparatus, which is including a display unit and a touch unit installed under the display unit. The display unit includes a first substrate and a second substrate installed in parallel. The touch unit includes a third substrate installed under the second substrate in parallel, and a plurality of first electrodes and a plurality of second electrodes separately installed on the lower surface of the second substrate and on the upper surface of the third substrate and facing each other. When a user touches the display unit of the electronic reading apparatus, the display unit will have a local deformation accordingly, the first electrode and the second electrode touch each other, and thus a touch signal is generated. Therefore, a touch function can be achieved.
Abstract:
An electrophoretic display apparatus includes a bottom substrate, an electrophoretic layer, a color filter substrate and a spacing layer. The bottom substrate has a drive circuitry layer, and the electrophoretic layer is disposed on the drive circuitry layer of the bottom substrate. The color filter substrate is disposed above the electrophoretic layer, and the spacing layer is disposed between the color filter substrate and the electrophoretic layer. The electrophoretic display apparatus has better display quality.
Abstract:
A violin display, installed on a violin, including: a control device, used to output a fingering lines pattern data; and a fingerboard display, installed on the fingerboard of the violin to display an image corresponding to the fingering lines pattern data.
Abstract:
An electro-phoretic display and a brightness adjusting method thereof are provided. The method for adjusting a brightness includes steps of: providing a pixel having a first area displaying a white color and a plurality of first particles corresponding to the first area; obtaining an environmental brightness; and controlling only locations of the plurality of first particles in response to the environmental brightness so as to adjust the brightness.
Abstract:
An electrophorises display unit includes a substrate, a first electrode, a first insulation layer, a second electrode and a second insulation layer. The first electrode is disposed on the substrate. The first insulation layer is disposed on the first electrode. The second electrode is disposed on the first insulation layer. The second insulation layer is disposed on the second electrode. Wherein, the second insulation layer has an opening for appearing a part of the second electrode.
Abstract:
A display includes a first substrate, a partition element, a second substrate, a dielectric liquid, a plurality of dielectrophoretic particles and a plurality of electrophoretic particles. The partition element is disposed on the first substrate. The second substrate is disposed on the partition element. The partition element forms at least one accommodating room between the first substrate and the second substrate. The first substrate or the second substrate is adapted to forming an electric field in the accommodating room. The dielectric liquid is disposed in the accommodating room and has a first dielectric constant. The dielectrophoretic particles are dispersed in the dielectric liquid. Each of the dielectrophoretic particles has a first color and a second dielectric constant different from the first one. The electrophoretic particles are dispersed in the dielectric liquid. Each of the electrophoretic particles has a second color different from the first one. Another display is also provided.
Abstract:
A pixel structure for a display device is provided. The pixel structure utilizes light entering from the ambient environment of the display as a light source. The pixel structure comprises a first substrate, a light obstructing layer, an active element and an adjustable light shielding layer. The light obstructing layer is disposed on the first substrate and has a transparent area and an opaque area. The active element is disposed on the opaque area of the light obstructing layer and has a first state and a second state. The adjustable light shielding layer is disposed on the light obstructing layer and the active element. When the active element is in the first state, the adjustable light shielding layer is adapted to cover the transparent area to shield the light from emitting out from the first substrate. When the active element is in the second state, the adjustable light shielding layer is driven to uncover the transparent area so that the light is adapted to emit out from the transparent area and the first substrate.