Abstract:
A nonvolatile memory with a simple structure where recorded information can be read without destruction. A voltage is impressed between a control gate and a memory gate for writing. A ferroelectric layer is polarized in accordance with the direction of the impressed voltage. A control gate voltage to make channel is small when the ferroelectric layer is polarized with the control gate side being positive. Control gate voltage to make channel is large when the ferroelectric layer is polarized with the control gate side being negative. The reference voltage is impressed on the control gate for reading. A large drain current flows when the ferroelectric layer is polarized with a second polarization and a small drain current flows when the ferroelectric layer is polarized with a first polarization. Record information can be read by detecting the drain current. Polarization status of the ferroelectric is not destroyed in the reading operation.
Abstract:
When a rewriting instruction data is provided to an instruction decoder from a read only memory for a program, the instruction decoder decodes the data and provides an instruction rewriting control signal to a writing block. Thereby, the writing block receives a data following the writing instruction data from the ROM and writes the received data in the rewritable area of the instruction decoder. When an instruction data is provided to the instruction decoder from the read only memory under this condition, an instruction which is different from the instruction therefor output when there is no rewriting instruction is therefor output based on the same instruction.
Abstract:
Nonvolatile memory with a simple structure where recorded information can be read without destruction: Voltage is impressed between control gate CG and memory gate MG at a writing operation. A ferroelectric layer 32 is polarized in accordance with the direction of the impressed voltage. The control gate voltage V.sub.CG to make a channel is low when the ferroelectric layer 32 is polarized with the control gate side being positive (polarized with second status). The control gate voltage V.sub.CG to make a channel is high when the ferroelectric layer 32 is polarized with the control gate side being negative (polarized with the first status). The reference voltage V.sub.ref is impressed to the control gate CG at the reading operation. A high drain current flows when the ferroelectric layer is polarized with the second status and low drain current flows when the ferroelectric layer is polarized with the first status. Recorded information can be read by detecting the drain current. With this reading operation, the polarization status is not destroyed.
Abstract:
To improve an angular color difference and emit uniform illumination light. According to an embodiment, a light-emitting device in an embodiment includes a light-emitting module (15). The light-emitting module (15) includes a substrate (21), a plurality of light-emitting elements (45) made of semiconductor, and a plurality of sealing members (54). The light-emitting elements (45) are disposed on the substrate (21). The sealing members (54) contain, as a main component, translucent resin mixed with a phosphor. The sealing members (54) are heaped up from the bottom surfaces thereof bonded on the substrate (21) and are each formed to bury a singularity or a plurality of the light-emitting elements (45). A ratio (H/D) of a diameter D of the bottom surfaces to height H of the heaps of the sealing members (54) is set to 0.22 to 1.0.
Abstract:
A self-ballasted lamp includes: a base body; a light-emitting module and a globe which are provided at one end side of the base body; a cap provided at the other end side of the base body; and a lighting circuit housed between the base body and the cap. The light-emitting module has light-emitting portions each using a semiconductor light-emitting element, and a support portion projected at one end side of the base body, and the light-emitting portions are disposed at least on a circumferential surface of the support portion. A light-transmissive member is interposed between the light-emitting module and an inner face of the globe.
Abstract:
According to one embodiment, a light emitting device includes a ceramics substrate, a metallic thermally-conductive layer formed on the substrate in which the substrate involves no electric connection, a light emitting element mounted on the metallic thermally-conductive layer, and a metallic bonding layer interposed between the metallic thermally-conductive layer and the light emitting element to bond the light emitting element to the metallic thermally-conductive layer.
Abstract:
According to one embodiment, a light-emitting device includes a substrate, a reflecting layer formed on the substrate, a light-emitting element placed on the reflecting layer, and a sealing resin layer that covers the reflecting layer and the light-emitting element. The oxygen permeability of the sealing resin layer is equal to or lower than 1200 cm3/(m2·day·atm), and the ratio of the area of the reflecting layer covered by the sealing resin layer to the entire area on the resin substrate covered by the sealing resin layer is between 30% and 75% inclusive.
Abstract:
According to one embodiment, a light-emitting device includes a series circuit, a substrate, and a sealing member. The series circuit includes a plurality of parallel circuits each including a plurality of light-emitting elements connected in parallel. The plurality of parallel circuits are connected in series. A plurality of groups are provided on the substrate. Each of the groups includes at least one of the light-emitting elements in the parallel circuit. The light-emitting elements are arranged in a divided manner according to each of the groups. The sealing member covers at least one of the light-emitting elements.
Abstract:
According to one embodiment, a light-emitting device comprises a substrate on which a plurality of light-emitting elements are arranged and mounted in two lines; and sealing members of two lines each sealing the plurality of light-emitting elements of each line. A distance between the lines of the sealing members is equal to 0.5 times or more but 2 times or less a width of the sealing member of each line.