Interactive remote digital image editing utilizing a scalable containerized architecture

    公开(公告)号:US11762622B1

    公开(公告)日:2023-09-19

    申请号:US17663635

    申请日:2022-05-16

    Applicant: Adobe Inc.

    CPC classification number: G06F3/1462 G06F3/1407 G06F3/1415 G06T11/60

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media for remotely generating modified digital images utilizing an interactive image editing architecture. For example, the disclosed systems receive an image editing request for remotely editing a digital image utilizing an interactive image editing architecture. In some cases, the disclosed systems maintain, via a canvas worker container, a digital stream that reflects versions of the digital image. The disclosed systems determine, from the digital stream utilizing the canvas worker container, an image differential metric indicating a difference between a first version of the digital image and a second version of the digital image associated with the image editing request. Further, the disclosed systems provide the image differential metric to a client device for rendering the second version of the digital image to reflect a modification corresponding to the user interaction.

    Automatically curated image searching

    公开(公告)号:US11361018B2

    公开(公告)日:2022-06-14

    申请号:US15824907

    申请日:2017-11-28

    Applicant: ADOBE INC.

    Abstract: Systems and methods for searching digital content are disclosed. A method includes receiving, from a user, a base search constraint. A search constraint includes search values or criteria. A recall set is generated based on the base search constraint. Recommended search constraints are determined and provided to the user. The recommended search constraints are statistically associated with the base search constraint. The method receives, from the user, a selection of a first search constraint included in the plurality of recommend search constraints. The method generates and provides search results to the user that include a re-ordering of the recall set. The re-ordering is based on a search constraint set that includes both the base search constraint and the selected first search constraint. The re-ordering is further based on a weight associated with the base search constraint and another user-provided weight associated with the first search constraint.

    ENHANCED IMAGE SEARCH VIA CONTROLLABLE ATTRIBUTES

    公开(公告)号:US20220164380A1

    公开(公告)日:2022-05-26

    申请号:US17104745

    申请日:2020-11-25

    Applicant: Adobe Inc.

    Abstract: A query image is received, along with a query to initiate a search process to find other images based on the query image. The query includes a preference value associated with an attribute, the preference value indicative of a level of emphasis to be placed on the attribute during the search. A full query vector, which is within a first dimensional space and representative of the query image, is generated. The full query vector is projected to a reduced dimensional space having a dimensionality lower than the first dimensional space, to generate a query vector. An attribute direction corresponding to the attribute is identified. A plurality of candidate vectors of the reduced dimensional space is searched, based on the attribute direction, the query vector, and the preference value, to identify a target vector of the plurality of candidate vectors. A target image, representative of the target vector, is displayed.

    IMAGE SEGMENTATION USING TEXT EMBEDDING

    公开(公告)号:US20220156992A1

    公开(公告)日:2022-05-19

    申请号:US16952008

    申请日:2020-11-18

    Applicant: Adobe Inc.

    Abstract: A non-transitory computer-readable medium includes program code that is stored thereon. The program code is executable by one or more processing devices for performing operations including generating, by a model that includes trainable components, a learned image representation of a target image. The operations further include generating, by a text embedding model, a text embedding of a text query. The text embedding and the learned image representation of the target image are in a same embedding space. Additionally, the operations include generating a class activation map of the target image by, at least, convolving the learned image representation of the target image with the text embedding of the text query. Moreover, the operations include generating an object-segmented image using the class activation map of the target image.

    ATTRIBUTE DECORRELATION TECHNIQUES FOR IMAGE EDITING

    公开(公告)号:US20220122232A1

    公开(公告)日:2022-04-21

    申请号:US17468476

    申请日:2021-09-07

    Applicant: Adobe Inc.

    Abstract: Systems and methods generate a filtering function for editing an image with reduced attribute correlation. An image editing system groups training data into bins according to a distribution of a target attribute. For each bin, the system samples a subset of the training data based on a pre-determined target distribution of a set of additional attributes in the training data. The system identifies a direction in the sampled training data corresponding to the distribution of the target attribute to generate a filtering vector for modifying the target attribute in an input image, obtains a latent space representation of an input image, applies the filtering vector to the latent space representation of the input image to generate a filtered latent space representation of the input image, and provides the filtered latent space representation as input to a neural network to generate an output image with a modification to the target attribute.

    GENERATING CONTEXTUAL TAGS FOR DIGITAL CONTENT

    公开(公告)号:US20210034657A1

    公开(公告)日:2021-02-04

    申请号:US16525366

    申请日:2019-07-29

    Applicant: Adobe Inc.

    Abstract: Systems, methods, and non-transitory computer-readable media are disclosed for determining multi-term contextual tags for digital content and propagating the multi-term contextual tags to additional digital content. For instance, the disclosed systems can utilize search query supervision to determine and associate multi-term contextual tags (e.g., tags that represent a specific concept based on the order of the terms in the tag) with digital content. Furthermore, the disclosed systems can propagate the multi-term contextual tags determined for the digital content to additional digital content based on similarities between the digital content and additional digital content (e.g., utilizing clustering techniques). Additionally, the disclosed systems can provide digital content as search results based on the associated multi-term contextual tags.

    Detecting objects using a weakly supervised model

    公开(公告)号:US10740647B2

    公开(公告)日:2020-08-11

    申请号:US15921492

    申请日:2018-03-14

    Applicant: Adobe Inc.

    Abstract: The present disclosure is directed toward systems and methods for detecting an object in an input image based on a target object keyword. For example, one or more embodiments described herein generate a heat map of the input image based on the target object keyword and generate various bounding boxes based on a pixel analysis of the heat map. One or more embodiments described herein then utilize the various bounding boxes to determine scores for generated object location proposals in order to provide a highest scoring object location proposal overlaid on the input image.

Patent Agency Ranking