Abstract:
An electronic device may include wireless circuitry that is configured to transmit wireless signals during operation. A maximum transmit power level may be established that serves as a cap on how much power is transmitted from the electronic device. Adjustments may be made to the maximum transmit power level in real time based on sensor signals and other information on the operating state of the electronic device. The sensor signals may include motion signals from an accelerometer. The sensor signals may also include ultrasonic sound detected by a microphone. Device orientation data may be used by the device to select whether to measure the ultrasonic sound using a front facing or rear facing microphone. Maximum transmit power level may also be adjusted based on whether or not sound is playing through an ear speaker in the device.
Abstract:
A host device is configured to increase the power output by an internal amplifier of its wireless chipset in response to requests from a remote device. Once the internal amplifier has reached its maximum power, further requests for power increases from the remove device do not similarly lead to automatic power increases being delivered by a external amplifier of the host device. Rather, the host device determines the strength of the link between it and the remote device. If the signal strength is too low, it is an indication that the signal power output by the remote device may not be sufficient to maintain the link and that any further increases in signal power by the host device will have little or no effect on the link. However, if the signal strength from the remote device is sufficient, the host device determines an error rate between it and the remote device. If the error rate is sufficiently low to maintain the link, then the host device will not further increase its signal output power. However, if the error rate is too high, the host device will turn on and/or increase power from its external amplifier to boost the power of its output signal and, thus, improve the error rate between it and the remote device.
Abstract:
Methods and devices for reducing the power consumption and increasing the efficiency of an LTE transmitter of an electronic device are provided. By way of example, a method includes calculating location data related to a region in which the electronic device may operate via the electronic device, determining via the electronic device a region in which the electronic device is currently operating within based on the location data, and adjusting an output transmitting power of the electronic device based at least in part on the region and one or more frequency operating parameters utilized by the electronic device.
Abstract:
In order to establish a connection between electronic devices, after receiving an advertising packet from another electronic device, an electronic device compares a performance metric associated with the communication with the other electronic device with a threshold value. Based on the comparison, the electronic device provides pairing-intent information specifying a pairing intent for the electronic device and the other electronic device for presentation by the other electronic device. Moreover, after receiving additional pairing-intent information specifying the pairing intent from the other electronic device, the electronic device establishes the connection with the other electronic device when the additional pairing-intent information matches the pairing-intent information. For example, the pairing intent may include a gesture and/or a sequence of one or more characters, and the additional pairing-intent information may include: the sequence of one or more characters; accelerometer data corresponding to the gesture; and/or user-interface data corresponding to the gesture.
Abstract:
Electronic devices may be provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and first and second antennas. An electronic device may include a housing. The first antenna may be located at an upper end of the housing and the second antenna may be located at a lower end of the housing. A peripheral conductive member may run around the edges of the housing and may be used in forming the first and second antennas. The radio-frequency transceiver circuitry may have a transmit-receive port and a receive port. Switching circuitry may connect the first antenna to the transmit-receive port and the second antenna to the receiver port or may connect the first antenna to the receive port and the second antenna to the transmit-receive port.
Abstract:
Methods for operating a portable electronic device to conduct mobile payment transactions are provided. The electronic device may include near field communications circuitry having a transmitter, a receiver, and a field detector for detecting a field from a merchant terminal. The receiver is typically idle. The receiver may be activated when the field detector detects that the electronic device is within the field of the merchant terminal. The transmitter may then be used to perform link establishment and data transfer. If the payment transaction fails for any reason, one or more hardware settings on the electronic device may be adjusted to help increase the chance of a successful transaction in a subsequent payment attempt. Another transaction may be attempted when the user moves the device out of the field and back into the field or may be performed automatically as long as the device is still within the field.
Abstract:
Systems and method for improving performance of a radio frequency system are provided. One embodiment describes a radio frequency system, which may be modified based upon a detected housing and/or accessory of an electronic device. The modifications may counteract impacts of the housings and/or accessories on the radio frequency transmission.
Abstract:
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
Abstract:
A wireless power transmission system may include a wireless power transmitting device such as a tablet computer and a wireless power receiving device such as a computer stylus. A wireless power transmitting capacitor electrode may be formed in the tablet computer. A wireless power receiving capacitor electrode may be formed in the computer stylus. The transmitting capacitor electrode may be driven by a drive signal having a frequency of 900 MHz or greater to produce wireless power. The wireless power may be transmitted from the transmitting capacitor electrode to the receiving capacitor electrode on the stylus via near field capacitive coupling. The transmitting and receiving capacitor electrodes may each include conductive traces on dielectric substrates. The conductive traces may follow meandering paths to maximize the possible capacitive coupling efficiency between the capacitor electrodes and thus the end-to-end charging efficiency of the wireless power transmission system.
Abstract:
Multi-radio wireless network devices are capable of transmitting and/or receiving data from multiple radiofrequency (RF) networks at different bands. Total transmission power limitations may be in place due to, for example, safety reasons. As a result, active management of transmission power may be performed during simultaneous transmission in different bands and/or networks. In some embodiments, the management may take place on group-by-group basis and a network-by-network basis. Antennas may be grouped based on their relative positions and impact on radiation emitted by the devices.