Abstract:
A set of user interfaces for a data processing system that operates with two or more display devices coupled to the system. In one embodiment, in response to moving a first window between two displays, the first window is displayed, as it straddles the two displays, differently on the two displays. For example, while a reference point (e.g. a cursor) on the window remains on a first display, a first portion of the window on the first display is displayed normally while a second portion on the second display is displayed with more translucence (more transparency) than the first portion; when the references point crosses to the second display, the first portion becomes more translucent than the second portion.
Abstract:
An electronic device displays, on a display, a map that is associated with a first orientation. The electronic device receives a touch input on a touch-sensitive surface, and, in response to receiving the touch input on the touch-sensitive surface, rotates the map on the display in accordance with the touch input. While rotating the map on the display in accordance with the touch input, in response to determining that a displayed orientation of the rotated map corresponds to the first orientation of the map, the electronic device generates a first tactile output.
Abstract:
A set of user interfaces for a data processing system that operates with two or more display devices coupled to the system. In one embodiment, in response to moving a first window between two displays, the first window is displayed, as it straddles the two displays, differently on the two displays. For example, while a reference point (e.g. a cursor) on the window remains on a first display, a first portion of the window on the first display is displayed normally while a second portion on the second display is displayed with more translucence (more transparency) than the first portion; when the references point crosses to the second display, the first portion becomes more translucent than the second portion.