Abstract:
Systems and methods presented herein provide for optical communications. In one embodiment, a communication system includes a plurality of communication nodes and a communication hub. A bundle of optical fibers optically links the nodes to the communication hub. The communication hub includes a laser operable to propagate unmodulated laser light to a first node along a first of the optical fibers in the bundle. The first node is operable to modulate the laser light with a first modulating signal source, and to propagate the modulated laser light to a second node. The second node is communicatively coupled to a second modulating signal source and to the first node. The second node is operable to optically combine upstream communications from the second modulating signal source with the modulated laser light from the first node, and to propagate the modulated laser light with the upstream communications to the communication hub at a same carrier wavelength.
Abstract:
A method to capture random data signals at an end point in a broadband network and process them via digital signal processing (DSP) techniques to determine both linear distortions and nonlinear distortions. In a distribution network, such as a tree and branch cable network, the location of the impairment addition can be identified by determining location of terminals have a distortion and locations of terminals that do not have a distortion. Linear distortions may be determined by an autocorrelation of the captured signal with itself. Nonlinear distortions may be determined by processing measured energy in a vacant band with manufactured energy in the vacant band. If a vacant band is not available, one can be created by demodulating a signal occupying the band, and subtracting the demodulated signal from the measured signal plus interference in a band, leaving only the interference.
Abstract:
Beamforming for adapting wireless signaling beams in an adaptive and agile manner is contemplated. The beamforming may be characterized by adaptively constructing beam form parameters to provide wireless signaling in a manner that maximizes efficiency and bandwidth according to device positioning relative to a responding base station.
Abstract:
A method and system operable to implement a multiple range, and optionally one-dimensional, transport scheduling process suitable to facilitate signal transport over a network for a variety of traffic types with different service requirements where two-dimensional mapping across frequency and/or time is required.
Abstract:
A fiber-optic network that uses as a hybrid telecommunication and sensing system when telecommunication signals and probe signals are transmitted across a shared fiber strand in either a co-propagated or counter-propagated direction is disclosed. Probe signals generated by a sensing termination system and/or by one or more end devices are used to analyze conditions affecting network hardware and/or events occurring within the fiber distribution area.
Abstract:
Adaptive modulation coding schemes improve spectral efficiency of telecommunication networks by implementing MCSs specific to each of a plurality of end devices in operable communication with a hub. For example, the MCSs may be specific to a channel, a wavelength, a distance, or capabilities of an end device. The MCSs are selected to include the highest modulation format and highest forward error correction coding rate that can be applied to a telecommunication signal without surpassing a signal parameter threshold.
Abstract:
A coherent passive optical network extender apparatus includes an extender transceiver for communication with an associated optical headend. The extender transceiver includes at least one receiving portion, at least one transmitting portion, and an extension processor. The apparatus further includes a signal adaptation unit configured to convert a downstream electrical transmission lane into a plurality of individual wavelengths. Each of the converted individual wavelengths are for transmission to one of an optical node and an end user. The apparatus further includes a plurality of transceivers, disposed within the signal adaptation unit, and configured to process and transmit the converted individual wavelengths as a bundle for retransmission to the respective end users.
Abstract:
A full duplex communication network includes an optical transmitter end having a first coherent optics transceiver, an optical receiver end having a second coherent optics transceiver, and an optical transport medium operably coupling the first coherent optics transceiver to the second coherent optics transceiver. The first coherent optics transceiver is configured to (i) transmit a downstream optical signal at a first wavelength, and (ii) simultaneously receive an upstream optical signal at a second wavelength. The second coherent optics transceiver is configured to (i) receive the downstream optical signal, and (ii) simultaneously transmit the upstream optical signal. The first wavelength has a first center frequency separated from a second center frequency of the second wavelength.
Abstract:
A method for automatic power and modulation management in a communication network includes (a) generating a discontinuous management function that is a weighted function of at least spectral efficiency and power consumption of the communication network, (b) determining, from the discontinuous management function, an optimal modulation format, an optimal forward error correction (FEC) rate, and an optimal output power of a transmitter of the communication network, which collectively achieve a maximum value of the management function, and (c) causing the transmitter to operate according to the optimal modulation format, the optimal FEC rate, and the optimal output power.
Abstract:
A transmitter for an optical communication network includes a primary laser source input substantially confined to a single longitudinal mode, an input data stream, and a modulator including at least one secondary laser having a resonator frequency of the single longitudinal mode of the primary laser source. The modulator is configured to receive the primary laser source input and the input data stream, and output a laser modulated data stream.