Optical film structures and articles for hidden displays and display devices

    公开(公告)号:US11378719B2

    公开(公告)日:2022-07-05

    申请号:US17004562

    申请日:2020-08-27

    Abstract: An article is described herein that includes: a translucent substrate comprising opposing major surfaces; and an optical film structure disposed on a first major surface of the substrate, the optical film structure comprising an outer surface and a plurality of periods such that each period comprises an alternating low refractive index layer and high refractive index layer. The article exhibits a hardness of 10 GPa or greater measured at an indentation depth of about 100 nm by a Berkovich Indenter Hardness Test. Further, the article exhibits a single side average photopic light reflectance of at least 50% of non-polarized light as measured at the outer surface from near-normal incidence to an incident angle of 60 degrees over a portion of at least 10 nm within the visible spectrum. In addition, each low refractive index layer comprises SiO2 or doped-SiO2 and each high refractive index layer comprises AlOxNy, SiOxNy, SiuAlvOxNy, SiNx or ZrO2.

    Durable anti-reflective articles
    62.
    发明授权

    公开(公告)号:US11267973B2

    公开(公告)日:2022-03-08

    申请号:US14707106

    申请日:2015-05-08

    Abstract: Embodiments of durable, anti-reflective articles are described. In one or more embodiments, the article includes a substrate and an anti-reflective coating disposed on the major surface. The article exhibits an average light transmittance of about 94% or greater over an optical wavelength regime and/or an average light reflectance of about 2% or less over the optical wavelength regime, as measured from an anti-reflective surface. In some embodiments, the article exhibits a maximum hardness of about 8 GPa or greater as measured by a Berkovich Indenter Hardness Test along an indentation depth of about 50 nm or greater and a b* value, in reflectance, in the range from about −5 to about 1 as measured on the anti-reflective surface only at all incidence illumination angles in the range from about 0 degrees to about 60 degrees under an International Commission on Illumination illuminant.

    OPTICAL FILM STRUCTURES AND ARTICLES FOR HIDDEN DISPLAYS AND DISPLAY DEVICES

    公开(公告)号:US20210063607A1

    公开(公告)日:2021-03-04

    申请号:US17004562

    申请日:2020-08-27

    Abstract: An article is described herein that includes: a translucent substrate comprising opposing major surfaces; and an optical film structure disposed on a first major surface of the substrate, the optical film structure comprising an outer surface and a plurality of periods such that each period comprises an alternating low refractive index layer and high refractive index layer. The article exhibits a hardness of 10 GPa or greater measured at an indentation depth of about 100 nm by a Berkovich Indenter Hardness Test. Further, the article exhibits a single side average photopic light reflectance of at least 50% of non-polarized light as measured at the outer surface from near-normal incidence to an incident angle of 60 degrees over a portion of at least 10 nm within the visible spectrum. In addition, each low refractive index layer comprises SiO2 or doped-SiO2 and each high refractive index layer comprises AlOxNy, SiOxNy, SiuAlvOxNy, SiNx or ZrO2.

    Durable glass ceramic cover glass for electronic devices

    公开(公告)号:USRE48200E1

    公开(公告)日:2020-09-08

    申请号:US16045438

    申请日:2018-07-25

    Abstract: The invention relates to glass articles suitable for use as electronic device housing/cover glass which comprise a glass ceramic material. Particularly, a cover glass comprising an ion-exchanged glass ceramic exhibiting the following attributes (1) optical transparency, as defined by greater than 90% transmission at 400-750 nm; (2) a fracture toughness of greater than 0.6 MPa·m1/2; (3) a 4-point bend strength of greater than 350 MPa; (4) a Vickers hardness of at least 450 kgf/mm2 and a Vickers median/radial crack initiation threshold of at least 5 kgf; (5) a Young's Modulus ranging between about 50 to 100 GPa; (6) a thermal conductivity of less than 2.0 W/m° C., and (7) and at least one of the following attributes: (i) a compressive surface layer having a depth of layer (DOL) greater and a compressive stress greater than 400 MPa, or, (ii) a central tension of more than 20 MPa.

Patent Agency Ranking