Abstract:
Small-radius coated optical fibers having large mode field diameter and low bending losses. The coated fiber may have an outer radius of 110 μm or less, while providing a mode field diameter of 9.0 μm or greater and a bending loss when wrapped about a 15 mm mandrel of 0.5 dB/km or less at wavelength of 1550 nm. The coated fiber may have a mode field diameter of 9.2 μm or greater and may have a bending loss at 1550 nm of 0.25 dB/km or less when wrapped about a 20 mm mandrel or a bending loss at 1550 nm of 0.02 dB/km or less when wrapped about a 30 mm mandrel.
Abstract:
Optical transmission systems and methods are disclosed that utilize a QSM optical fiber with a large effective area and that supports only two modes, namely the fundamental mode and one higher-order mode. The optical transmission system includes a transmitter and a receiver optically coupled by an optical fiber link that includes at least one section of the QSM optical fiber. Transmission over optical fiber link gives rise to MPI, which is mitigated using a digital signal processor. The QSM optical fiber is designed to have an amount of DMA that allows for the digital signal processor to have reduced complexity as reflected by a reduced number of filter taps as compared to if the DMA were zero.
Abstract:
A method is provided that includes: forming a low-index trench region with a first density; forming an inner barrier layer comprising silica around the trench region at a second density greater than the first density; depositing silica-based soot around the first barrier layer to form an overclad region at a third density less than the second density; inserting a core cane into a trench-overclad structure; forming an outer barrier layer comprising silica in an outer portion of the overclad region at a fourth density greater than the third density; flowing a down dopant-containing gas through the trench-overclad structure to dope the trench region with the down dopant, and wherein the barrier layers mitigate diffusion of the down-dopant into the overclad region; and consolidating the trench-overclad and the core cane.
Abstract:
An optical fiber having a core comprising silica and greater than 1.5 wt % chlorine and less than 0.5 wt % F, said core having a refractive index Δ1MAX, and a inner cladding region having refractive index Δ2MIN surrounding the core, where Δ1MAX>Δ2MIN.
Abstract:
Multimode optical fiber systems with adjustable chromatic modal dispersion compensation are disclosed, wherein the system includes a VCSEL light source and primary and secondary optically coupled multimode optical fibers. Because the VCSEL light source has a wavelength spectrum that radially varies, its use with the primary multimode optical fiber creates chromatic modal dispersion that reduces bandwidth. The compensating multimode optical fiber is designed to have a difference in alpha parameter relative to the primary multimode optical fiber of −0.1≦Δα≦−0.9. This serves to create a modal delay opposite to the chromatic modal dispersion. The compensation is achieved by using a select length of the compensating multimode optical fiber optically coupled to an output end of the primary multimode optical fiber. The compensating multimode optical fiber can be configured to be bend insensitive.
Abstract:
A method for forming ion-exchanged regions in a glass article by contacting an ion source with at least one surface of the glass article, forming a first ion-exchanged region in the glass article by heating a first portion of the glass article with a laser, and forming a second ion-exchanged region in the glass article. Characteristics of the first ion-exchanged region may be different from characteristics of the second ion-exchanged region. A depth of the ion-exchanged region may be greater than 1 μm. A glass article including a first ion-exchanged region, and a second ion-exchanged region having different characteristics from the first ion-exchanged region. The thickness of the glass article is less than or equal to about 0.5 mm.
Abstract:
An optical fiber is provided that includes a fiber configured to transmit optical data in a plurality of modes or in a single mode; a core region in the fiber that comprises fluorine-doped silica; and a cladding in the fiber that surrounds the core region and that comprises fluorine-doped silica. The core region has a graded refractive index profile with an alpha of about 0.5 to 5. The core of the fiber may be set with a radius of approximately 6 to 50 microns. The cladding may also comprise one or a plurality of layers, including trench or moat regions of a relatively lower refractive index. Still further, an inner cladding may be doped with fluorine at a concentration greater than that in the core region. An outer cladding can comprise silica with fluorine at a concentration below or equal to that in the inner cladding.
Abstract:
Multi-core optical fibers are disclosed herein. According to one embodiment, a multi-core optical fiber includes a common outer cladding formed from silica-based glass and having a cladding index of refraction ncl. At least one single mode core element may be disposed in the common outer cladding. The at least one single mode core element may have a maximum index of refraction n1 sm. In addition, at least one multimode core element may be disposed in the common outer cladding, the at least one multimode core element having a maximum index of refraction n1 mm. The maximum refractive index n1 sm of the at least one single mode core element may be greater than the cladding index of refraction ncl, the maximum refractive index n1 mm of the at least one multi-mode core element may be greater than ncl, and a center-to-center spacing between adjacent core elements is greater than or equal to 25 μm.
Abstract:
An anti-resonant hollow core optical fiber preform that includes an outer cladding, a plurality of structural tubes, and a central support tube. The outer cladding has a length, a central longitudinal axis, and a hollow interior. The plurality of structural tubes are disposed within the hollow interior of the outer cladding, the plurality of structural tubes each having a length that extends the length of the outer cladding. And the central support tube is disposed within the hollow interior of the outer cladding such that the plurality of structural tubes are disposed radially outward of the central support tube, the central support tube having a length that extends along the central longitudinal axis of the outer cladding. Furthermore, the length of the central support tube is less than the length of the outer cladding.
Abstract:
A method including transmitting an intensity-modulated light through a mode conditioner to generate a mode-conditioned intensity-modulated light in one or a plurality of launch conditions and transmitting the mode-conditioned intensity-modulated light through a multimode optical fiber under test (FUT) to excite a plurality of modes of the FUT. The method further includes converting the mode-conditioned intensity-modulated light transmitted through the FUT into an electrical signal, measuring, based on the electrical signal, a complex transfer function CTF(f) of the FUT, and obtaining an output pulse based on the measured complex transfer function CTF(f) from one or a plurality of launch conditions and an assumed input pulse using the equation: Pout (t)=−1(CTF(f)*(Pin(t))). Wherein, Pout (t) is the output pulse, −1(CTF(f)*(Pin(t))) is the inverse Fourier transform of the function CTF(f)*(Pin (t)), and (Pin(t)) is the Fourier transform of the assumed input pulse. Additionally, the method includes calculating modal bandwidth of the FUT based on Pout(t).