Abstract:
An exemplary semiconductor die package of the invention has a metal-oxide substrate disposed between a first surface of a semiconductor die and a heat-sinking component, with a conductive die clip or one or more electrical interconnect traces disposed between the metal-oxide substrate and the first surface of the semiconductor die. The heat-sinking component may comprise a heat sink, or an adaptor plate to which a heat sink may be coupled. The conductive die clip or electrical trace(s) provides electrical connection(s) to the first surface of the semiconductor die, while the metal-oxide substrate electrically insulates the die from the heat-sinking component, and provides a path of high thermal conductivity between the die and the heat-sinking component. The second surface of the semiconductor die may be left free to connect to a circuit board, or a leadframe or interconnect substrate may be attached to it.
Abstract:
An exemplary semiconductor die package of the invention has a metal-oxide substrate disposed between a first surface of a semiconductor die and a heat-sinking component, with a conductive die clip or one or more electrical interconnect traces disposed between the metal-oxide substrate and the first surface of the semiconductor die. The heat-sinking component may comprise a heat sink, or an adaptor plate to which a heat sink may be coupled. The conductive die clip or electrical trace(s) provides electrical connection(s) to the first surface of the semiconductor die, while the metal-oxide substrate electrically insulates the die from the heat-sinking component, and provides a path of high thermal conductivity between the die and the heat-sinking component. The second surface of the semiconductor die may be left free to connect to a circuit board, or a leadframe or interconnect substrate may be attached to it.
Abstract:
Disclosed are semiconductor die structures that enable a die having a vertical power device to be packaged in a wafer-level chip scale package where the current-conducting terminals are present at one surface of the die, and where the device has very low on-state resistance. In an exemplary embodiment, a trench and an aperture are formed in a backside of a die, with the aperture contacting a conductive region at the top surface of the die. A conductive layer and/or a conductive body may be disposed on the trench and aperture to electrically couple the backside current-conducting electrode of the device to the conductive region. Also disclosed are packages and systems using a die with a die structure according to the invention, and methods of making dice with a die structure according to the invention.
Abstract:
A method of bonding a semiconductor substrate to a metal substrate is disclosed. In some embodiments the method includes forming a semiconductor device in a semiconductor substrate, the semiconductor device comprising a first surface. The method further includes obtaining a metal substrate. The metal substrate is bonded to the first surface of the semiconductor device, wherein at least a portion of the metal substrate forms an electrical terminal for the semiconductor device.
Abstract:
A mandrel assembly has a hollow main tube and two annular sleeves, wherein an inner diameter of the two annular sleeves is larger than an outer diameter of the two main tube ends. The two annular sleeves are sleeved respectively on the two main tube ends, which can be easily disengaged from the mandrel assembly when applied with an external force.