Abstract:
A light source system includes a splitter that split light beams F0 emitted from a light source into at least light beams FM and light beams FS, and an optical detecting system that guides the light beams FM to a detector. A light component near a light-intensity peak of the light beams F0 in a plane perpendicular to a propagation direction of the light beams F0 is included only in the light beams FS. Accordingly, light beams have a substantially circular or elliptic cross section with the intensity peak near the center. Light at the peak is supplied to the outside, and other light is used to control an amount of light.
Abstract:
A light-amount detecting device includes: a light source which emits a light beam; a branching optical element which divides the light beam emitted from the light source into a first light beam traveling in a predetermined direction and a second light beam traveling in a direction different to the predetermined direction; a light-condensing element which condenses the second light beam; a light-receiving element having a light-receiving surface which receives the second light beam condensed by the light-condensing element; and a detector which detects a light-amount of the second light beam received by the light-receiving element, and at least one of a direction of reflected light of the second light beam reflected from the light-receiving surface of the light-receiving element and spread of the reflected light of the second light beam reflected from the light-receiving surface of the light-receiving element is adjusted to control a light-amount of the reflected light of the second light beam returning to the light source.
Abstract:
A second scanning lens has a refracting power in a sub-scanning direction, and an optical element-deforming unit that changes a position of the center of curvature of the second scanning lens in the sub-scanning direction to a direction substantially parallel to the sub-scanning direction. Further, a function Cs(y) of a curvature in the sub-scanning direction of the scanning lens deformed by the optical element-deforming unit in the scanning lens is set to have only one extreme value within a mirror surface region on a first surface of the lens.
Abstract:
An optical scanning device includes a coupling optical system, a light source including a plurality of light emitting units for emitting light beams, and a deflector including a deflecting surface for deflecting the light beams. The coupling optical system is arranged on an optical path between the light source and the deflector so that the light beams enter the deflector at an angle with respect to a normal direction of the deflecting surface in a sub-scanning direction. The light emitting units are arranged two-dimensionally, and a distance between two light emitting units at opposite ends in a main scanning direction is smaller than a distance between two light emitting units at opposite ends in the sub-scanning direction.
Abstract:
In an optical scanning device employing a multi-beam scanning method, a surface emitting laser light source includes laser emission sources; a parallel-plate-like quarter wavelength plate is arranged between the surface emitting laser light source and a first optical system; a light-intensity detecting unit separates light intensity of the laser beams of which form is converted by the first optical system and detects separated laser beams; and a light-intensity adjusting unit adjusts emission intensity of the laser emission sources individually based on a detection result by the light-intensity detecting unit. The quarter wavelength plate is arranged so that an optical axis thereof is tilted ±45 degrees with respect to the main-scanning direction around an optical axis of the first optical system.
Abstract:
In an optical scanning apparatus, when it is assumed that a scanning direction of light beams defected from a deflector is a main scanning direction, and a direction orthogonal to the main scanning direction and to optical axes of both a first and a second optical systems is a sub scanning direction, a distance between the outermost light emitting elements of a light source in the main scanning direction is longer than that in the sub scanning direction.
Abstract:
An optical scanning device includes a vertical-cavity surface-emitting laser light source that emits laser beams perpendicular to a top surface thereof; a first optical system that couples the beams from the light source; a deflecting unit that deflects the beams; a second optical system that guides the beams from the first optical system to the deflecting unit; a third optical system that focuses the beams deflected by the deflecting unit into an optical spot on a scanned surface; and a light-quantity adjusting element disposed between the light source and the deflecting unit and having a substrate formed of a first and second surfaces. The first surface of the light-quantity adjusting element is coated with neutral density coating and the second surface is coated with antireflection coating so that reflectance of the second surface is made smaller than reflectance of the first surface.
Abstract:
In an optical scanning device, a lateral magnification in a direction corresponding to a sub scanning direction of an optical system is adjusted to be small by a coupling optical system that includes a first lens and a second lens. As a result, scanning by a plurality of light beams can be performed with high precision while avoiding high costs.
Abstract:
A monitoring device includes a first aperture plate, a second aperture plate, and a photodiode. The first aperture is disposed in a light path of a light beam emitted by a light source and includes a first aperture arranged such that a portion of the light beam having maximum light intensity passes and a reflecting portion that reflects the light beam as a monitoring light beam. The second aperture plate is disposed in a light path of the monitoring light beam and includes a second aperture that shapes a beam diameter of the monitoring light beam. The photodiode receives the monitoring light beam.
Abstract:
An optical scanning device includes a light source configured to emit light beams, a deflector to deflect the light beams emitted from the light source, a first optical assembly which is positioned upon a light path of the light beams traveling from the light source to the deflector and which forms an image with the light beams emitted from the light source in a sub scanning direction in a vicinity of the deflector, and a second optical assembly to form the image upon a surface to be scanned with the light beams deflected by the deflector. A principal ray of two of the light beams incident to the first optical assembly, which are located at each respective terminus in the sub scanning direction, are set so as to advance so as either to remain mutually parallel to or converge with one another after passing through the first optical assembly.