Abstract:
A flexible fluid storage system for holding large volumes of fluid and a process and apparatus for the handling and transportation of the flexible storage system is provided. The flexible storage system includes a main storage bag with an attachment apron with fingers, a ground sheet, a lay flat tube for fluid circulation, a pressure release port, and fill/drain ports. The flexible storage system is configured for attachment to a trailer and reel system such that the flexible storage system can be mechanically rolled onto or off of a reel on a semi-truck trailer bed for easy transportation, deployment, and storage of the flexible storage system.
Abstract:
The present invention relates to antigens, more particularly antigens of Streptococcus pyogenes (also called group A Streptococcus (GAS)) bacterial pathogen which are useful as vaccine component for therapy and/or prophylaxis.
Abstract:
Streptococcus proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.
Abstract:
The invention relates to a method of detecting the presence of a liquid fuel leak in a gas turbine (1). During this method:a reference value (27, 37) is determined for at least a first operating parameter of the turbine,a value (29, 39) of the said operating parameter is measured during a start-up phase of the turbine,the measurement value and the reference value are compared,whether a first anomaly (13, 41) is present is identified,an alert notification (33, 43) is generated if a first anomaly (31, 41) is detected for the first parameter, and in parallelshutdown of the turbine (35, 45) is triggered if a second anomaly (34, 44) is detected for a second parameter.The invention also relates to a device for detecting a liquid fuel leak in a gas turbine, employing such a method.
Abstract:
The identification of a highly conserved, immunologically accessible antigen at the surface of Neisseria facilitates treatment, prophylaxis, and diagnosis of Neisseria diseases. This antigen is highly resistant to Proteinase K and has an apparent molecular weight of 22 kDa on SDS-PAGE. Specific polynucleotides encoding proteins of this class have been isolated from three Neisseria meningitidis strains and from one Neisseria gonorrhoeae strain. These polynucleotides have been sequenced, and the corresponding full-length amino acid sequences of the encoded polypeptides have been deduced. Recombinant DNA methods for the production of the Neisseria surface protein, and antibodies that bind to this protein are also disclosed.
Abstract:
The identification of a highly conserved, immunologically accessible antigen at the surface of Neisseria facilitates treatment, prophylaxis, and diagnosis of Neisseria diseases. This antigen is highly resistant to Proteinase K and has an apparent molecular weight of 22 kDa on SDS-PAGE. Specific polynucleotides encoding proteins of this class have been isolated from three Neisseria meningitidis strains and from one Neisseria gonorrhoeae strain. These polynucleotides have been sequenced, and the corresponding full-length amino acid sequences of the encoded polypeptides have been deduced. Recombinant DNA methods for the production of the Neisseria surface protein, and antibodies that bind to this protein are also disclosed.
Abstract:
The present invention relates to antigens, more particularly antigens of Group B Streptococcus (GBS) (S. agalactiae) which may be useful to prevent, diagnose and/or treat streptococcal infections.
Abstract:
The present invention relates to antigens, more particularly antigens of Group B Streptococcus (GBS) (S. agalactiae) which may be useful to prevent, diagnose and/or treat streptococcal infections.
Abstract:
The identification of a highly conserved, immunologically accessible antigen at the surface of Neisseria facilitates treatment, prophylaxis, and diagnosis of Neisseria diseases. This antigen is highly resistant to Proteinase K and has an apparent molecular weight of 22 kDa on SDS-PAGE. Specific polynucleotides encoding proteins of this class have been isolated from three Neisseria meningitidis strains and from one Neisseria gonorrhoeae strain. These polynucleotides have been sequenced, and the corresponding full-length amino acid sequences of the encoded polypeptides have been deduced. Recombinant DNA methods for the production of the Neisseria surface protein, and antibodies that bind to this protein are also disclosed.
Abstract:
The identification of a highly conserved, immunologically accessible antigen at the surface of Neisseria facilitates treatment, prophylaxis, and diagnosis of Neisseria diseases. This antigen is highly resistant to Proteinase K and has an apparent molecular weight of 22 kDa on SDS-PAGE. Specific polynucleotides encoding proteins of this class have been isolated from three Neisseria meningitidis strains and from one Neisseria gonorrhoeae strain. These polynucleotides have been sequenced, and the corresponding full-length amino acid sequences of the encoded polypeptides have been deduced. Recombinant DNA methods for the production of the Neisseria surface protein, and antibodies that bind to this protein are also disclosed.